ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • evolution  (2)
  • Bread-making quality  (1)
  • Cholesterol 7-alpha-Hydroxylase/metabolism  (1)
  • 2020-2024  (1)
  • 2000-2004  (3)
  • 1985-1989
  • 1
    facet.materialart.
    Unknown
    Frontiers Media SA
    Publication Date: 2024-04-05
    Description: What controls the different rates of evolution to give rise to conserved and divergent proteins and RNAs? How many trials until evolution can adapt to physiological changes? Every organism has arisen through multiple molecular changes, and the mechanisms that are employed (mutagenesis, recombination, transposition) have been an issue left to the elegant discipline of evolutionary biology. But behind the theory are realities that we have yet to ascertain: How does an evolving cell accommodate its requirements for both conserving its essential functions, while also providing a selective advantage? In this volume, we focus on the evolution of the eukaryotic telomere, the ribo-nuclear protein complex at the end of a linear chromosome. The telomere is an example of a single chromosomal element that must function to maintain genomic stability. The telomeres of all species must provide a means to avoid the attrition from semi-conservative DNA replication and a means of telomere elongation (the telomere replication problem). For example, telomerase is the most well-studied mechanism to circumvent telomere attrition by adding the short repeats that constitutes most telomeres. The telomere must also guard against the multiple activities that can act on an unprotected double strand break requiring a window (or checkpoint) to compensate for telomere sequence loss as well as protection against non-specific processes (the telomere protection problem). This volume describes a range of methodologies including mechanistic studies, phylogenetic comparisons and data-based theoretical approaches to study telomere evolution over a broad spectrum of organisms that includes plants, animals and fungi. In telomeres that are elongated by telomerases, different components have widely different rates of evolution. Telomerases evolved from roots in archaebacteria including splicing factors and LTR-transposition. At the conserved level, the telomere is a rebel among double strand breaks (DSBs) and has altered the function of the highly conserved proteins of the ATM pathway into an elegant means of protecting the chromosome end and maintaining telomere size homeostasis through a competition of positive and negative factors. This homeostasis, coupled with highly conserved capping proteins, is sufficient for protection. However, far more proteins are present at the telomere to provide additional species-specific functions. Do these proteins provide insight into how the cell allows for rapid change without self-destruction?
    Keywords: QH426-470 ; Q1-390 ; Arabidopsis ; TERL proteins ; IncRNA ; Candida Saccharomyces ; evolution ; retrotransposons ; Telomere ; paralog ; Vertebrates ; t-loops ; Model ; TRF proteins ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSA Life sciences: general issues::PSAK Genetics (non-medical)
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2000-09-01
    Description: Several nuclear hormone receptors involved in lipid metabolism form obligate heterodimers with retinoid X receptors (RXRs) and are activated by RXR agonists such as rexinoids. Animals treated with rexinoids exhibited marked changes in cholesterol balance, including inhibition of cholesterol absorption and repressed bile acid synthesis. Studies with receptor-selective agonists revealed that oxysterol receptors (LXRs) and the bile acid receptor (FXR) are the RXR heterodimeric partners that mediate these effects by regulating expression of the reverse cholesterol transporter, ABC1, and the rate-limiting enzyme of bile acid synthesis, CYP7A1, respectively. Thus, these RXR heterodimers serve as key regulators of cholesterol homeostasis by governing reverse cholesterol transport from peripheral tissues, bile acid synthesis in liver, and cholesterol absorption in intestine.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Repa, J J -- Turley, S D -- Lobaccaro, J A -- Medina, J -- Li, L -- Lustig, K -- Shan, B -- Heyman, R A -- Dietschy, J M -- Mangelsdorf, D J -- R37 HL 09610/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2000 Sep 1;289(5484):1524-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9050, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10968783" target="_blank"〉PubMed〈/a〉
    Keywords: ATP Binding Cassette Transporter 1 ; ATP-Binding Cassette Transporters/genetics/*metabolism ; Animals ; Bile Acids and Salts/biosynthesis ; Biological Transport/drug effects ; Cholesterol/*metabolism ; Cholesterol 7-alpha-Hydroxylase/metabolism ; Cholesterol, Dietary/administration & dosage ; Cricetinae ; DNA-Binding Proteins/metabolism ; Dimerization ; Gene Expression Regulation/drug effects ; Glycoproteins/genetics/*metabolism ; Homeostasis/drug effects ; Intestinal Absorption/*drug effects ; Intestine, Small/*metabolism ; Ligands ; Liver/*metabolism ; Macrophages, Peritoneal/metabolism ; Male ; Mesocricetus ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Orphan Nuclear Receptors ; *Receptors, Cytoplasmic and Nuclear ; Receptors, Retinoic Acid/agonists/genetics/*metabolism ; Receptors, Thyroid Hormone/agonists/genetics/metabolism ; Retinoid X Receptors ; Transcription Factors/agonists/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of the history of biology 33 (2000), S. 221-246 
    ISSN: 1573-0387
    Keywords: August Weismann ; ciliates ; Clifford Dobell ; cytology ; death ; Emile Maupas ; evolution ; Herbert Spencer Jennings ; Otto Bütschli ; Paramecium ; rejuvenescence ; sex
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , History
    Notes: Abstract In the period 1875–1920, a debate about the generality and applicability of evolutionary theory to all organisms was motivated by work on unicellular ciliates like Paramecium because of their peculiar nuclear dualism and life cycles. The French cytologist Emile Maupas and the German zoologist August Weismann argued in the 1880s about the evolutionary origins and functions of sex (which in the ciliates is not linked to reproduction), and death (which appeared to be the inevitable fate of lineages denied sexual conjugation), an argument rooted in the question of whether the ciliates and their processes where homologous to other cellular organisms. In the beginning of the twentieth century, this question of homology came to be less important as the ciliates were used by the British protozoologist Clifford Dobell and the American zoologist Herbert Spencer Jennings to study evolutionary processes in general rather than problems of development and cytology. For them, homology mattered less than analogy. This story illustrates two partially distinct problems in evolutionary biology: first, the question of whether all living things have common features and origins; and second, whether their history and current nature can be described by identical mechanisms. Where Maupas (contra Weismann) made the ciliates qualitatively the same as all other organisms in order to create a cohesive evolutionary theory for biology, Jennings and Dobell made them qualitatively different in order to achieve the same end.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2242
    Keywords: Key words Transgenic wheat ; HMW glutenins ; Gene silencing ; Bread-making quality
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Wheat HMW glutenin subunit genes 1Ax1 and 1Dx5 were introduced, and either expressed or overexpressed, into a commercial wheat cultivar that already expresses five subunits. Six independent transgenic events were obtained and characterized by SDS-PAGE and Southern analysis. The 1Dx5 gene was overexpressed in two events without changes in the other endosperm proteins. Overexpression of 1Dx5 increased the contribution of HMW glutenin subunits to total protein up to 22%. Two events express the 1Ax1 subunit transgene with associated silencing of the 1Ax2* endogenous subunit. In the SDS-PAGE one of them shows a new HMW glutenin band of an apparent Mr lower than that of the 1Dx5 subunit. Southern analysis of the four events confirmed transformation and suggest that the transgenes are present in a low copy number. Silencing of all the HMW glutenin subunits was observed in two different events of transgenic wheat expressing the 1Ax1 subunit transgene and overexpressing the Dx5 gene. Transgenes and expression patterns were stably transmitted to the progenies in all the events except one where in some of the segregating T2 seeds the silencing of all HMW glutenin subunits was reverted associated with a drastic lost of transgenes from a high to a low copy number. The revertant T2 seeds expressed the five endogenous subunits plus the 1Ax1 transgene.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...