ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oceanographic buoys  (3)
  • Seasonal variability  (2)
  • Atm/Ocean Structure/ Phenomena  (1)
  • 2020-2024
  • 2010-2014  (6)
  • 1985-1989
  • 1
    Publication Date: 2022-05-25
    Description: The R/V Oceanus, on Cruise 475, carried out the deployment of three moorings for the Coastal and Global Scale Nodes (CGSN) Implementing Organization of the NSF Ocean Observatories Initiative. These three moorings are prototypes of the moorings to be used by CGSN at the Pioneer, Endurance, and Global Arrays. Oceanus departed from Woods Hole, Massachusetts on September 22, 2011 and steamed south to the location of the mooring deployments on the shelf break. Over three days, September 23-25, Oceanus surveyed the bottom at the planned mooring sites, deployed the moorings, and carried out on site verification of the functioning of the moorings and moored hardware. Oceanus returned to Woods Hole on September 26, 2011.
    Description: Funding was provided by the National Science Foundation through the Consortium for Ocean Leadership
    Keywords: Oceanus (Ship : 1975-) Cruise OC475 ; Oceanographic buoys ; Oceanography
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society 2006. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 19 (2006): 6153–6169, doi:10.1175/JCLI3970.1.
    Description: The present study used a new net surface heat flux (Qnet) product obtained from the Objective Analyzed Air–Sea Fluxes (OAFlux) project and the International Satellite Cloud Climatology Project (ISCCP) to examine two specific issues—one is to which degree Qnet controls seasonal variations of sea surface temperature (SST) in the tropical Atlantic Ocean (20°S–20°N, east of 60°W), and the other is whether the physical relation can serve as a measure to evaluate the physical representation of a heat flux product. To better address the two issues, the study included the analysis of three additional heat flux products: the Southampton Oceanographic Centre (SOC) heat flux analysis based on ship reports, and the model fluxes from the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis and the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40). The study also uses the monthly subsurface temperature fields from the World Ocean Atlas to help analyze the seasonal changes of the mixed layer depth (hMLD). The study showed that the tropical Atlantic sector could be divided into two regimes based on the influence level of Qnet. SST variability poleward of 5°S and 10°N is dominated by the annual cycle of Qnet. In these regions the warming (cooling) of the sea surface is highly correlated with the increased (decreased) Qnet confined in a relatively shallow (deep) hMLD. The seasonal evolution of SST variability is well predicted by simply relating the local Qnet with a variable hMLD. On the other hand, the influence of Qnet diminishes in the deep Tropics within 5°S and 10°N and ocean dynamic processes play a dominant role. The dynamics-induced changes in SST are most evident along the two belts, one of which is located on the equator and the other off the equator at about 3°N in the west, which tilts to about 10°N near the northwestern African coast. The study also showed that if the degree of consistency between the correlation relationships of Qnet, hMLD, and SST variability serves as a measure of the quality of the Qnet product, then the Qnet from OAFlux + ISCCP and ERA-40 are most physically representative, followed by SOC. The NCEP–NCAR Qnet is least representative. It should be noted that the Qnet from OAFlux + ISCCP and ERA-40 have a quite different annual mean pattern. OAFlux + ISCCP agrees with SOC in that the tropical Atlantic sector gains heat from the atmosphere on the annual mean basis, where the ERA-40 and the NCEP–NCAR model reanalyses indicate that positive Qnet occurs only in the narrow equatorial band and in the eastern portion of the tropical basin. Nevertheless, seasonal variances of the Qnet from OAFlux + ISCCP and ERA-40 are very similar once the respective mean is removed, which explains why the two agree with each other in accounting for the seasonal variability of SST. In summary, the study suggests that an accurate estimation of surface heat flux is crucially important for understanding and predicting SST fluctuations in the tropical Atlantic Ocean. It also suggests that future emphasis on improving the surface heat flux estimation should be placed more on reducing the mean bias.
    Description: This study is support by the NOAA CLIVAR Atlantic under Grant NA06GP0453 and NOAA Climate observations and Climate Change and Data Detection under Grant NA17RJ1223.
    Keywords: Sea surface temperature ; Surface fluxes ; Seasonal variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 20 (2007): 3190-3209, doi:10.1175/JCLI4163.1.
    Description: This study investigated the accuracy and physical representation of air–sea surface heat flux estimates for the Indian Ocean on annual, seasonal, and interannual time scales. Six heat flux products were analyzed, including the newly developed latent and sensible heat fluxes from the Objectively Analyzed Air–Sea Heat Fluxes (OAFlux) project and net shortwave and longwave radiation results from the International Satellite Cloud Climatology Project (ISCCP), the heat flux analysis from the Southampton Oceanography Centre (SOC), the National Centers for Environmental Prediction reanalysis 1 (NCEP1) and reanalysis-2 (NCEP2) datasets, and the European Centre for Medium-Range Weather Forecasts operational (ECMWF-OP) and 40-yr Re-Analysis (ERA-40) products. This paper presents the analysis of the six products in depicting the mean, the seasonal cycle, and the interannual variability of the net heat flux into the ocean. Two time series of in situ flux measurements, one taken from a 1-yr Arabian Sea Experiment field program and the other from a 1-month Joint Air–Sea Monsoon Interaction Experiment (JASMINE) field program in the Bay of Bengal were used to evaluate the statistical properties of the flux products over the measurement periods. The consistency between the six products on seasonal and interannual time scales was investigated using a standard deviation analysis and a physically based correlation analysis. The study has three findings. First of all, large differences exist in the mean value of the six heat flux products. Part of the differences may be attributable to the bias in the numerical weather prediction (NWP) models that underestimates the net heat flux into the Indian Ocean. Along the JASMINE ship tracks, the four NWP modeled mean fluxes all have a sign opposite to the observations, with NCEP1 being underestimated by 53 W m−2 (the least biased) and ECMWF-OP by 108 W m−2 (the most biased). At the Arabian Sea buoy site, the NWP mean fluxes also have an underestimation bias, with the smallest bias of 26 W m−2 (ERA-40) and the largest bias of 69 W m−2 (NCEP1). On the other hand, the OAFlux+ISCCP has the best comparison at both measurement sites. Second, the bias effect changes with the time scale. Despite the fact that the mean is biased significantly, there is no major bias in the seasonal cycle of all the products except for ECMWF-OP. The latter does not have a fixed mean due to the frequent updates of the model platform. Finally, among the four products (OAFlux+ISCCP, ERA-40, NCEP1, and NCEP2) that can be used for studying interannual variability, OAFlux+ISCCP and ERA-40 Qnet have good consistency as judged from both statistical and physical measures. NCEP1 shows broad agreement with the two products, with varying details. By comparison, NCEP2 is the least representative of the Qnet variabilities over the basin scale.
    Description: This work is supported by the NOAA Office of Climate Observation and the Office of Climate Change and Data Detection under Grant NA17RJ1223.
    Keywords: Indian Ocean ; Interannual variability ; Seasonal variability ; Fluxes ; Air-sea interaction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: The Woods Hole Oceanographic Institution (WHOI) Hawaii Ocean Timeseries (HOT) Site (WHOTS), 100 km north of Oahu, Hawaii, is intended to provide long-term, high-quality air-sea fluxes as a part of the NOAA Climate Observation Program. The WHOTS mooring also serves as a coordinated part of the HOT program, contributing to the goals of observing heat, fresh water and chemical fluxes at a site representative of the oligotrophic North Pacific Ocean. The approach is to maintain a surface mooring outfitted for meteorological and oceanographic measurements at a site near 22.75°N, 158°W by successive mooring turnarounds. These observations will be used to investigate air–sea interaction processes related to climate variability. This report documents recovery of the WHOTS-6 mooring and deployment of the seventh mooring (WHOTS-7). Both moorings used Surlyn foam buoys as the surface element and were outfitted with two Air–Sea Interaction Meteorology (ASIMET) systems. Each ASIMET system measures, records, and transmits via Argos satellite the surface meteorological variables necessary to compute air–sea fluxes of heat, moisture and momentum. The upper 155 m of the moorings were outfitted with oceanographic sensors for the measurement of temperature, conductivity and velocity in a cooperative effort with R. Lukas of the University of Hawaii. A pCO2 system was installed on the WHOTS-7 buoy in a cooperative effort with Chris Sabine at the Pacific Marine Environmental Laboratory. The WHOTS mooring turnaround was done on the University of Hawaii research vessel Kilo Moana, by the Upper Ocean Processes Group of the Woods Hole Oceanographic Institution. The cruise took place between 27 July and 4 August 2010. Operations began with deployment of the WHOTS-7 mooring on 28 July. This was followed by meteorological intercomparisons and CTDs. Recovery of WHOTS-6 took place on 2 Aug 2010. This report describes these cruise operations, as well as some of the in-port operations and pre-cruise buoy preparations.
    Description: Funding was provided by the National Oceanic and Atmospheric Administration under Grant No. NA09OAR4320129
    Keywords: Kilo Moana (Ship) Cruise KM1014 ; Ocean-atmosphere interaction ; Oceanographic buoys ; Marine meteorology
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 2569–2587, doi:10.1175/JPO-D-14-0026.1.
    Description: This paper describes the occurrence of diurnal restratification events found in the southeast trade wind regime off northern Chile. This is a region where persistent marine stratus clouds are found and where there is a less than complete understanding of the dynamics that govern the maintenance of the sea surface temperature. A surface mooring deployed in the region provides surface meteorological, air–sea flux, and upper-ocean temperature, salinity, and velocity data. In the presence of steady southeast trade winds and strong evaporation, a warm, salty surface mixed layer is found in the upper ocean. During the year, these trade winds, at times, drop dramatically and surface heating leads to the formation of shallow, warm diurnal mixed layers over one to several days. At the end of such a low wind period, mean sea surface temperature is warmer. Though magnitudes of the individual diurnal warming events are consistent with local forcing, as judged by running a one-dimensional model, the net warming at the end of a low wind event is more difficult to predict. This is found to stem from differences between the observed and predicted near-inertial shear and the depths over which the warmed water is distributed. As a result, the evolution of SST has a dependency on these diurnal restratification events and on near-surface processes that govern the depth over which the heat gained during such events is distributed.
    Description: RAW was supported by the NOAA Climate Program Office. SM and AT were supported by NASA Grant NNX12AD47G,ONR Grant N000140910196, and NSF-OCE 0928138 RAW.
    Description: 2015-03-01
    Keywords: Atm/Ocean Structure/ Phenomena ; Atmosphere-ocean interaction ; Boundary layer ; Diurnal effects ; Mixed layer
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: The R/V Knorr, on Cruise 206, carried out the recovery of three moorings for the Coastal and Global Scale Nodes (CGSN) Implementing Organization of the NSF Ocean Observatories Initiative. These three moorings are prototypes of the moorings to be used by CGSN at the Pioneer, Endurance, and Global Arrays. Knorr departed from Woods Hole, Massachusetts on April 10, 2012 and steamed south to the location of the mooring deployments on the shelf break. Over five days, April 10-15, Knorr surveyed the bottom at the planned mooring sites, recovered the moorings, and carried out preliminary investigations of mechanical and electrical functionality on the recovered moorings and mooring hardware, including observations of biofouling and corrosion. Knorr returned to Woods Hole on April 15, 2012.
    Description: Funding was provided by the National Science Foundation contract #SA9-10 through the Consortium for Ocean Leadership
    Keywords: Knorr (Ship : 1970-) Cruise KN206 ; Oceanographic buoys ; Oceanography
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...