ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (2)
Collection
Keywords
Language
Years
Year
  • 1
    Publication Date: 2022-07-20
    Description: Empirical evidence demonstrates that lakes and reservoirs are warming across the globe. Consequently, there is an increased need to project future changes in lake thermal structure and resulting changes in lake biogeochemistry in order to plan for the likely impacts. Previous studies of the impacts of climate change on lakes have often relied on a single model forced with limited scenario-driven projections of future climate for a relatively small number of lakes. As a result, our understanding of the effects of climate change on lakes is fragmentary, based on scattered studies using different data sources and modelling protocols, and mainly focused on individual lakes or lake regions. This has precluded identification of the main impacts of climate change on lakes at global and regional scales and has likely contributed to the lack of lake water quality considerations in policy-relevant documents, such as the Assessment Reports of the Intergovernmental Panel on Climate Change (IPCC). Here, we describe a simulation protocol developed by the Lake Sector of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) for simulating climate change impacts on lakes using an ensemble of lake models and climate change scenarios. The protocol prescribes lake simulations driven by climate forcing from gridded observations and different Earth system models under various Representative Greenhouse Gas Concentration Pathways, all consistently bias-corrected on a 0.5° × 0.5° global grid. In ISIMIP phase 2, 11 lake models were forced with these data to project the thermal structure of 62 well-studied lakes where data were available for calibration under historical conditions, and for nearly 17,500 lakes using uncalibrated models and forcing data from the global grid where lakes are present. In ISIMIP phase 3, this approach was expanded to consider more lakes, more models, and more processes. The ISIMIP Lake Sector is the largest international effort to project future water temperature, thermal structure, and ice phenology of lakes at local and global scales and paves the way for future simulations of the impacts of climate change on water quality and biogeochemistry in lakes.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-04-01
    Description: The analysis of concentration‐discharge (C‐Q) relationships from low‐frequency observations is commonly used to assess solute sources, mobilization, and reactive transport processes at the catchment scale. High‐frequency concentration measurements are increasingly available and offer additional insights into event‐scale export dynamics. However, only few studies have integrated inter‐annual and event‐scale C‐Q relationships. Here, we analyze high‐frequency measurements of specific conductance (EC), nitrate (NO3‐N) concentrations and spectral absorbance at 254 nm (SAC254, as a proxy for dissolved organic carbon) over a two year period for four neighboring catchments in Germany ranging from more pristine forested to agriculturally managed settings. We apply an integrated method that adds a hysteresis term to the established power law C‐Q model so that concentration intercept, C‐Q slope and hysteresis can be characterized simultaneously. We found that inter‐event variability in C‐Q hysteresis and slope were most pronounced for SAC254 in all catchments and for NO3‐N in forested catchments. SAC254 and NO3‐N event responses in the smallest forested catchment were closely coupled and explainable by antecedent conditions that hint to a common near‐stream source. In contrast, the event‐scale C‐Q patterns of EC in all catchments and of NO3‐N in the agricultural catchment without buffer zones around streams were less variable and similar to the inter‐annual C‐Q relationship indicating a homogeneity of mobilization processes over time. Event‐scale C‐Q analysis thus added key insights into catchment functioning whenever the inter‐annual C‐Q relationship contrasted with event‐scale responses. Analyzing long‐term and event‐scale behavior in one coherent framework helps to disentangle these scattered C‐Q patterns.
    Description: Key Points: We compare event‐scale and inter‐annual concentration‐discharge relationships in four adjoined catchments with contrasting land use. The variability of event‐scale C‐Q relationships was shaped by land use and antecedent conditions for biogeochemically reactive but not for geogenic solutes. For biogeochemically reactive solutes, event‐scale C‐Q patterns can contrast the inter‐annual pattern obtained from all observations.
    Description: Helmholtz Association http://dx.doi.org/10.13039/501100009318
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Keywords: ddc:551.48
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...