ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (5)
Collection
Publisher
Language
Year
  • 1
    Publication Date: 2022-03-21
    Description: Heterogeneous data, different definitions and incompatible models are a huge problem in many domains, with no exception for the field of energy systems analysis. Hence, it is hard to re-use results, compare model results or couple models at all. Ontologies provide a precisely defined vocabulary to build a common and shared conceptualisation of the energy domain. Here, we present the Open Energy Ontology (OEO) developed for the domain of energy systems analysis. Using the OEO provides several benefits for the community. First, it enables consistent annotation of large amounts of data from various research projects. One example is the Open Energy Platform (OEP). Adding such annotations makes data semantically searchable, exchangeable, re-usable and interoperable. Second, computational model coupling becomes much easier. The advantages of using an ontology such as the OEO are demonstrated with three use cases: data representation, data annotation and interface homogenisation. We also describe how the ontology can be used for linked open data (LOD).
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-06-03
    Description: We present a comprehensive Li and B isotope study of granites, aplites, and igneous enclaves from the multi-phase Eibenstock granite in the Western Erzgebirge-Vogtland metallogenic province of Germany. The studied samples cover the entire compositional range of the granites from moderately to highly evolved and include variably altered types as obtained by magmatic fractionation, post-magmatic high- to medium-temperature and near-surface low-temperature alteration. Fractionation and alteration processes are unequivocally documented by the chemical variability of the rocks. Despite the marked imprint of these processes on bulk-rock compositions, our granite samples show only little variation in δ7Li (−0.52 to 0.75‰) and δ11B (−17.46 to −14.78‰), with surface samples defining the lower end of the δ7Li range. The narrow range in δ7Li suggests that magmatic fractionation and high-temperature overprint have a very minor effect on δ7Li. The B budget of the samples is dominated by tourmaline, which makes δ11B values insensitive for later high- to medium-temperature overprint or surficial low-temperature alteration. Depending on whether tourmaline crystallized before or after exsolution and loss of magmatic fluids, whole-rock samples have higher or lower δ11B values. Granite enclaves have δ7Li and δ11B values ranging from −1.51 to −0.81‰ and − 14.55 to −13.89‰, respectively. Some samples have chemical and mineralogical evidence for wall-rock interaction during emplacement or later overprint by external fluids. These samples show broader ranges in δ7Li (−2.61 to 2.21‰) and δ11B (−21.58 to −9.85‰). These values show that wall-rock interaction via assimilation and external fluids may affect δ7Li and δ11B to a larger extent than intra-magmatic processes, such as fractional crystallization, fluid-mediated autometasomatic overprinting, or exsolution of fluids from the melt. The offset of δ7Li and δ11B values towards the compositions of the wall rocks reflects the contrasting composition of granite and country rock and the addition of country-rock material to the granite. The magnitude of the offset reflects both the relative contribution of wall-rock derived Li and B to the granite and the magnitude of the difference in the Li and B isotopic compositions between them.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-11-09
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-01-03
    Description: This data set is Part 9 of a series of data sets dealing with the composition of accessory minerals from felsic igneous rocks compiles chemical data for monazite-(Ce), xenotime-(Y) and zircon from several, late-Variscan granite occurrences in the Aue-Schwarzenberg Granite Zone (ASGZ) located in the Western Erzgebirge−Vogtland metallogenic province of Germany. The rocks treated in this data set encompass the biotite granites of the Aue suite, Bernsbach and Beierfeld, and the two-mica granites from Lauter and the Schwarzenberg suite. The data set contains the complete pile of electron-microprobe analyses for monazite-(Ce) (MONA-ASGZ-2021), xenotime-(Y) (XENO-ASGZ-2021) and zircon (ZIRC-ASGZ-2021). Tables are presented as Excel (xlsx) resp. machine-readable csv formats. The content of the tables and further information on the granites and regional geology are provided in the data description file and the supplementary literature. The ASGZ (about 325-322 Ma) is located within the deep-reaching Gera-Jáchymov Fault Zone and includes the F-poor biotite granites of the Aue suite (including the granite occurrences at Schlema-Alberoda, Aue, Auerhammer, and Schneeberg), Bernsbach and Beierfeld, and the F-poor two-mica granites of the Schwarzenberg suite (covering the granite occurrences at Schwarzenberg, Neuwelt, and Erla) and Lauter (Fig. 1). The granite encountered by drilling at the village Burkersdorf does not represent an independent intrusion, but is instead a subsurface exposure of the westerly Kirchberg granite, at the contact to the metamorphic country rock. The petrography, mineralogy, geochemistry, isotopic composition, and geochronology of the ASGZ rocks have been comprehensively described by Förster et al. (2009). The paper of Förster (2010) reports a selection of results of electron-microprobe analyses of monazite-(Ce), xenotime-(Y) and zircon, but the bulk of the obtained data remained unpublished. This paper also provides a mineralogical mass-balance calculation for the lanthanides and actinides of the Aue and Schwarzenberg granite suites and a selection of back-scattered electron images displaying the intergrowths, texture, and alteration patterns of the radioactive and REE-Y-Zr-bearing accessory species. The F-poor biotite granites of the ASGZ are weakly to mildly peraluminous (A/CNK = 1.07 – 1.14; SiO2 = 70 – 76 wt.%). The F-poor two-mica granites are mildly to strongly peraluminous (A/CNK = 1.17 – 1.26) and cover a similar range in silica concentration (69 – 77 wt%). From this granite group, only more fractionated, higher evolved sub-intrusions were subjected to the study of accessory-mineral composition. Some granites of this zone are genetically related with ortho-magmatic W-Mo veins and para-magmatic vein-type U mineralization.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-27
    Description: Garpenbergite is a new mineral (IMA2020-099) from the Garpenberg Norra mine, Hedemora, Dalarna, Sweden. It occurs with carlfrancisite and minor stibarsen, paradocrasite and filipstadite in a fractured skarn matrix of granular jacobsite, alleghanyite, kutnohorite and dolomite. Crystals are short-prismatic, up to 1.5 mm in length. They have a blackish to greyish brown colour, and are lustrous semi-opaque, with brown streak. Garpenbergite is brittle, with an uneven to subconchoidal fracture. Cleavage is distinct on {010}. Hardness ≈ 5 (Mohs) and VHN100 = 650(40). Dcalc = 4.47(1) g⋅cm−3, overall ncalc = 1.85. Maximum specular reflectance values (%) obtained are 9.2 (470 nm), 9.1 (546 nm), 9.0 (589 nm) and 8.9 (650 nm). The empirical chemical formula of garpenbergite, based on electron microprobe data, is (Mn2+3.97Mg1.48Mn3+0.26Zn0.29)Σ6.00(As0.89Fe3+0.04Mn3+0.06Si0.01)Σ1.00(Sb0.98Fe0.02)Σ1O10[(OH)1.99Cl0.01]Σ2.00. The five strongest Bragg peaks in the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are 3.05 (30) (002), 2.665 (100) (161), 2.616 (40) (301), 2.586 (25) (251) and 1.545 (45) (462). The orthorhombic unit-cell dimensions (in Å) are a = 8.6790(9), b = 18.9057(19) and c = 6.1066(6), with V = 1001.99(18) Å3 for Z = 4. The crystal structure was refined from single-crystal X-ray diffraction data in the space-group Ibmm to R1 = 3.7% for 957 reflections. Garpenbergite, ideally Mn6As5+Sb5+O10(OH)2, is isostructural with manganostibite, Mn7AsSbO12, but possesses a cation vacancy (□) at an octahedrally coordinated structural site; the two minerals are thus related by the exchange Mn2+ + 2O2– → □ + 2(OH)–. The presence of hydroxyl groups is supported by vibration bands at 3647 and 3622 cm−1 in the Raman spectrum of garpenbergite and by bond-valence considerations.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...