ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Barium  (2)
  • Glacier
  • Radium isotopes
  • 2020-2023  (2)
  • 1
    Publication Date: 2022-11-10
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in van Beek, P., François, R., Honda, M., Charette, M., Reyss, J.-L., Ganeshram, R., Monnin, C., & Honjo, S. Fractionation of 226Ra and Ba in the upper North Pacific Ocean. Frontiers in Marine Science, 9, (2022): 859117, https://doi.org/10.3389/fmars.2022.859117.
    Description: Investigations conducted during the GEOSECS program concluded that radium-226 (T1/2 = 1602 y) and barium are tightly correlated in waters above 2500 m in the Atlantic, Pacific and Antarctic Oceans, with a fairly uniform 226Ra/Ba ratio of 2.3 ± 0.2 dpm µmol-1 (4.6 nmol 226Ra/mol Ba). Here, we report new 226Ra and Ba data obtained at three different stations in the Pacific Ocean: stations K1 and K3 in the North-West Pacific and station old Hale Aloha, off Hawaii Island. The relationship between 226Ra and Ba found at these stations is broadly consistent with that reported during the GEOSECS program. At the three investigated stations, however, we find that the 226Ra/Ba ratios are significantly lower in the upper 500 m of the water column than at greater depths, a pattern that was overlooked during the GEOSECS program, either because of the precision of the measurements or because of the relatively low sampling resolution in the upper 500 m. Although not always apparent in individual GEOSECS profiles, this trend was noted before from the non-zero intercept of the linear regression when plotting the global data set of Ba versus 226Ra seawater concentration and was attributed, at least in part, to the predominance of surface input from rivers for Ba versus bottom input from sediments for 226Ra. Similarly, low 226Ra/Ba ratios in the upper 500 m have been reported in other oceanic basins (e.g. Atlantic Ocean). Parallel to the low 226Ra/Ba ratios in seawater, higher 226Ra/Ba ratios were found in suspended particles collected in the upper 500 m. This suggests that fractionation between the two elements may contribute to the lower 226Ra/Ba ratios found in the upper 500 m, with 226Ra being preferentially removed from surface water, possibly as a result of mass fractionation during celestite formation by acantharians and/or barite precipitation, since both chemical elements have similar ionic radius and the same configuration of valence electrons. This finding has implications for dating of marine carbonates by 226Ra, which requires a constant initial 226Ra/Ba ratio incorporated in the shells and for using 226Ra as an abyssal circulation and mixing tracer.
    Description: This work was supported by a Lavoisier fellowship attributed by the French Ministry of Foreign Affairs to PB in year 2002 and by the Woods Hole Oceanographic Institution (WHOI). This work was completed at the University of Edinburgh in 2003, while PB was a postdoctoral fellow there, with a Marie Curie fellowship from the European Union. The European Union is thus also thanked. MC acknowledges support from the National Science Foundation, Chemical Oceanography program.
    Keywords: Radium ; Barium ; Seawater ; Ratio ; Fractionation ; Dating ; Ocean circulation ; Suspended particles
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 36(6), (2022): e2022GB007330, https://doi.org/10.1029/2022gb007330.
    Description: Processes controlling dissolved barium (dBa) were investigated along the GEOTRACES GA03 North Atlantic and GP16 Eastern Tropical Pacific transects, which traversed similar physical and biogeochemical provinces. Dissolved Ba concentrations are lowest in surface waters (∼35–50 nmol kg−1) and increase to 70–80 and 140–150 nmol kg−1 in deep waters of the Atlantic and Pacific transects, respectively. Using water mass mixing models, we estimate conservative mixing that accounts for most of dBa variability in both transects. To examine nonconservative processes, particulate excess Ba (pBaxs) formation and dissolution rates were tracked by normalizing particulate excess 230Th activities. Th-normalized pBaxs fluxes, with barite as the likely phase, have subsurface maxima in the top 1,000 m (∼100–200 μmol m−2 year−1 average) in both basins. Barite precipitation depletes dBa within oxygen minimum zones from concentrations predicted by water mass mixing, whereas inputs from continental margins, particle dissolution in the water column, and benthic diffusive flux raise dBa above predications. Average pBaxs burial efficiencies along GA03 and GP16 are ∼37% and 17%–100%, respectively, and do not seem to be predicated on barite saturation indices in the overlying water column. Using published values, we reevaluate the global freshwater dBa river input as 6.6 ± 3.9 Gmol year−1. Estuarine mixing processes may add another 3–13 Gmol year−1. Dissolved Ba inputs from broad shallow continental margins, previously unaccounted for in global marine summaries, are substantial (∼17 Gmol year−1), exceeding terrestrial freshwater inputs. Revising river and shelf dBa inputs may help bring the marine Ba isotope budget more into balance.
    Description: The International GEOTRACES Programme is possible in part thanks to the support from the U.S. National Science Foundation (Grant OCE-1840868) to the Scientific Committee on Oceanic Research (SCOR). This research was supported by the National Science Foundation under Grant No. NSF OCE-0927951, NSF OCE-1137851, NSF OCE-1261214, and NSF OCE-1925503 to A. M. Shiller; NSF OCE-1829563 to R. F. Anderson; NSF OCE-0927064 and NSF OCE-1233688 to R. F. Anderson and M. Q. Fleisher; NSF OCE-0927754 to R. Lawrence Edwards; NSF OCE-1233903 to R. Lawrence Edwards and H. Cheng; NSF OCE-0926860 to L. F. Robinson; NSF OCE-0963026 and NSF OCE-1518110 to P. J. Lam; and NSF OCE-1232814 to B. S. Twining.
    Keywords: Barium ; Excess barium ; Barite ; GEOTRACES ; Th-normalized flux ; Burial efficiency
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...