ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Geophysical Union  (44)
  • Elsevier  (15)
  • American Society for Microbiology  (5)
  • 2020-2023  (64)
Collection
Years
Year
  • 1
    Publication Date: 2022-10-19
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography and Paleoclimatology 37(1), (2022): e020PA004137, https://doi.org/10.1029/2020PA004137.
    Description: Reconstructions of aeolian dust flux to West African margin sediments can be used to explore changing atmospheric circulation and hydroclimate over North Africa on millennial to orbital timescales. Here, we extend West African margin dust flux records back to 37 ka in a transect of sites from 19° to 27°N, and back to 67 ka at Ocean Drilling Program (ODP) Hole 658C, in order to explore the interplay of orbital and high-latitude forcings on North African climate and make quantitative estimates of dust flux during the core of the Last Glacial Maximum (LGM). The ODP 658C record shows a Green Sahara interval from 60 to 50 ka during a time of high Northern Hemisphere summer insolation, with dust fluxes similar to levels during the early Holocene African Humid Period, and an abrupt peak in flux during Heinrich event 5a (H5a). Dust fluxes increase from 50 to 35 ka while the high-latitude Northern Hemisphere cools, with peaks in dust flux associated with North Atlantic cool events. From 35 ka through the LGM dust deposition decreases in all cores, and little response is observed to low-latitude insolation changes. Dust fluxes at sites from 21° to 27°N were near late Holocene levels during the LGM time slice, suggesting a more muted LGM response than observed from mid-latitude dust sources. Records along the northwest African margin suggest important differences in wind responses during different stadials, with maximum dust flux anomalies centered south of 20°N during H1 and north of 20°N during the Younger Dryas.
    Description: This research was supported by NSF #OCE-1103262 to L. Bradtmiller, NSF #OCE-1030784 to D. McGee, P. deMenocal, and G. Winckler, and by internal grants from Macalester College and MIT.
    Description: 2022-06-07
    Keywords: North Africa ; Dust flux ; Aeolian dust ; Green Sahara ; Stadials
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Dragone, N. B., Diaz, M. A., Hogg, I., Lyons, W. B., Jackson, W. A., Wall, D. H., Adams, B. J., & Fierer, N. Exploring the boundaries of microbial habitability in soil. Journal of Geophysical Research: Biogeosciences, 126(6), (2021): e2020JG006052, https://doi.org/10.1029/2020JG006052.
    Description: Microbes are widely assumed to be capable of colonizing even the most challenging terrestrial surface environments on Earth given enough time. We would not expect to find surface soils uninhabited by microbes as soils typically harbor diverse microbial communities and viable microbes have been detected in soils exposed to even the most inhospitable conditions. However, if uninhabited soils do exist, we might expect to find them in Antarctica. We analyzed 204 ice-free soils collected from across a remote valley in the Transantarctic Mountains (84–85°S, 174–177°W) and were able to identify a potential limit of microbial habitability. While most of the soils we tested contained diverse microbial communities, with fungi being particularly ubiquitous, microbes could not be detected in many of the driest, higher elevation soils—results that were confirmed using cultivation-dependent, cultivation-independent, and metabolic assays. While we cannot confirm that this subset of soils is completely sterile and devoid of microbial life, our results suggest that microbial life is severely restricted in the coldest, driest, and saltiest Antarctic soils. Constant exposure to these conditions for thousands of years has limited microbial communities so that their presence and activity is below detectable limits using a variety of standard methods. Such soils are unlikely to be unique to the studied region with this work supporting previous hypotheses that microbial habitability is constrained by near-continuous exposure to cold, dry, and salty conditions, establishing the environmental conditions that limit microbial life in terrestrial surface soils.
    Description: This work was supported by grants from the U.S. National Science Foundation (ANT 1341629 to B. J. Adams, N. Fierer, W. Berry Lyons, and D. H. Wall and OPP 1637708 to B. J. Adams) with additional support provided to N. B. Dragone from University Colorado Department of Ecology and Evolutionary Biology.
    Keywords: Antarctica ; Soils ; Bacteria ; Fungi ; Extremophiles ; Astrobiology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-12-24
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 127(7), (2022): e2021JC018333, https://doi.org/10.1029/2021JC018333.
    Description: As part of a project focused on the coastal fisheries of Isla Natividad, an island on the Pacific coast of Baja California, Mexico, we conducted a 2-1/2 year study of flows at two sites within the island's kelp forests. At one site (Punta Prieta), currents are tidal, whereas at the other site (Morro Prieto), currents are weaker and may be more strongly influenced by wind forcing. Satellite estimates of the biomass of the giant kelp (Macrocystis pyrifera) for this period varied between 0 (no kelp) and 3 kg/m2 (dense kelp forest), including a period in which kelp entirely was absent as a result of the 2014–2015 “Warm Blob” in the Eastern Pacific. During this natural “deforestation experiment”, alongshore velocities at both sites when kelp was present were substantially weaker than when kelp was absent, with low-frequency alongshore currents attenuated more than higher frequency ones, behavior that was the same at both sites despite differences in forcing. The attenuation of cross-shore flows by kelp was less than alongshore flows; thus, residence times for water inside the kelp forest, which are primarily determined by cross-shore velocities, were only weakly affected by the presence or absence of kelp. The flow changes we observed in response to changes in kelp density are important to the biogeochemical functioning of the kelp forest in that slower flows imply longer residence times, and, are also ecologically relevant in that reduced tidal excursions may lead to more localized recruitment of planktonic larvae.
    Description: The work we describe here was supported by NSF grants DEB 1212124, OCE 1416934, OCE 1736830, and OCE 2022927, by an equipment grant from the Kuwait Foundation for the Advancement of Sciences, and through grants from the Marisla Foundation, Packard Foundation, and Walton Family Foundation.
    Description: 2022-12-24
    Keywords: Kelp ; Tides ; Coastal circulation ; Mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(8), (2020): e2020JC016197, doi:10.1029/2020JC016197.
    Description: Synoptic shipboard measurements, together with historical hydrographic data and satellite data, are used to elucidate the detailed structure of the Atlantic Water (AW) boundary current system in the southern Canada Basin and its connection to the upstream source of AW in the Chukchi Borderland. Nine high‐resolution occupations of a transect extending from the Beaufort shelf to the deep basin near 152°W, taken between 2003 and 2018, reveal that there are two branches of the AW boundary current that flow beneath and counter to the Beaufort Gyre. Each branch corresponds to a warm temperature core and transports comparable amounts of Fram Strait Branch Water between roughly 200–700 m depth, although they are characterized by a different temperature/salinity (T/S) structure. The mean volume flux of the combined branches is 0.87 ± 0.13 Sv. Using the historical hydrographic data, the two branches are tracked upstream by their temperature cores and T/S signatures. This sheds new light on how the AW negotiates the Chukchi Borderland and why two branches emerge from this region. Lastly, the propagation of warm temperature anomalies through the region is quantified and shown to be consistent with the deduced circulation scheme.
    Description: This work was funded by the following sources: National Science Foundation Grants PLR‐1504333, OPP‐1733564, and OPP‐1504394; National Oceanic and Atmospheric Administration Grant NA14OAR4320158; and National Aeronautics and Space Administration Grant NNX10AF42G.
    Description: 2021-01-27
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Rheuban, J. E., Doney, S. C., McCorkle, D. C., & Jakuba, R. W. Quantifying the effects of nutrient enrichment and freshwater mixing on coastal ocean acidification. Journal of Geophysical Research-Oceans, 124, (2019): 9085-9100, doi: 10.1029/2019JC015556.
    Description: The U.S. Northeast is vulnerable to ocean and coastal acidification because of low alkalinity freshwater discharge that naturally acidifies the region, and high anthropogenic nutrient loads that lead to eutrophication in many estuaries. This study describes a combined nutrient and carbonate chemistry monitoring program in five embayments of Buzzards Bay, Massachusetts to quantify the effects of nutrient loading and freshwater discharge on aragonite saturation state (Ω). Monitoring occurred monthly from June 2015 to September 2017 with higher frequency at two embayments (Quissett and West Falmouth Harbors) and across nitrogen loading and freshwater discharge gradients. The more eutrophic stations experienced seasonal aragonite undersaturation, and at one site, nearly every measurement collected was undersaturated. We present an analytical framework to decompose variability in aragonite Ω into components driven by temperature, salinity, freshwater endmember mixing, and biogeochemical processes. We observed strong correlations between apparent oxygen utilization and the portion of aragonite Ω variation that we attribute to biogeochemistry. The regression slopes were consistent with Redfield ratios of dissolved inorganic carbon and total alkalinity to dissolved oxygen. Total nitrogen and the contribution of biogeochemical processes to aragonite Ω were highly correlated, and this relationship was used to estimate the likely effects of nitrogen loading improvements on aragonite Ω. Under nitrogen loading reduction scenarios, aragonite Ω in the most eutrophic estuaries could be raised by nearly 0.6 units, potentially increasing several stations above the critical threshold of 1. This analysis provides a quantitative framework for incorporating ocean and coastal acidification impacts into regulatory and management discussions.
    Description: We thank Kelly Luis, Michaela Fendrock, Will Oesterich, Sheron Luk, Marti Jeglinksi, and Tony Williams for their help with field sample collection and logistical support and Chris Neill, Lindsay Scott, Rich McHorney, and Paul Henderson for laboratory sample analysis. We also thank the Waquoit Bay National Estuarine Research Reserve for loaning their handheld water quality meters and two anonymous reviewers for their feedback on this manuscript. Financial support for this work was provided by the John D. and Catherine T. MacArthur Foundation (grant no. 14‐106159‐000‐CFP), MIT Sea Grant (subaward 5710004045) and the West Wind Foundation. The data used in this analysis can be found in the NOAA NCEI repository for carbonate chemistry measurements, the Ocean Carbon Data System at the following link: https://www.nodc.noaa.gov/ocads/data/0206206.xml.
    Keywords: Coastal Acidification ; Eutrophication
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-27
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Riedel, M., Rohr, K. M. M., Spence, G. D., Kelley, D., Delaney, J., Lapham, L., Pohlman, J. W., Hyndman, R. D., & Willoughby, E. C. Focused fluid flow along the Nootka fault zone and continental slope, explorer-Juan de Fuca Plate Boundary. Geochemistry Geophysics Geosystems, 21(8), (2020): e2020GC009095, doi:10.1029/2020GC009095.
    Description: Geophysical and geochemical data indicate there is abundant fluid expulsion in the Nootka fault zone (NFZ) between the Juan de Fuca and Explorer plates and the Nootka continental slope. Here we combine observations from 〉20 years of investigations to demonstrate the nature of fluid‐flow along the NFZ, which is the seismically most active region off Vancouver Island. Seismicity reaching down to the upper mantle is linked to near‐seafloor manifestation of fluid flow through a network of faults. Along the two main fault traces, seismic reflection data imaged bright spots 100–300 m below seafloor that lie above changes in basement topography. The bright spots are conformable to sediment layering, show opposite‐to‐seafloor reflection polarity, and are associated with frequency reduction and velocity push‐down indicating the presence of gas in the sediments. Two seafloor mounds ~15 km seaward of the Nootka slope are underlain by deep, nonconformable high‐amplitude reflective zones. Measurements in the water column above one mound revealed a plume of warm water, and bottom‐video observations imaged hydrothermal vent system biota. Pore fluids from a core at this mound contain predominately microbial methane (C1) with a high proportion of ethane (C2) yielding C1/C2 ratios 〈500 indicating a possible slight contribution from a deep source. We infer the reflective zones beneath the two mounds are basaltic intrusions that create hydrothermal circulation within the overlying sediments. Across the Nootka continental slope, gas hydrate‐related bottom‐simulating reflectors are widespread and occur at depths indicating heat flow values of 80–90 mW/m2.
    Description: This study represents data from numerous cruises acquired over more than two decades. We would like to thank all the scientific personnel and technical staff involved in data acquisition, processing of samples, and making observations during the ROV dives, as well as the crews and captains of the various research vessels involved. This is contribution #5877 from the University of Maryland Center for Environmental Science. This is NRCan contribution number / Numéro de contribution de RNCan: 20200324.
    Keywords: Fluid flow ; Nootka transform fault ; Gas hydrate ; Intrusion ; Heat flow
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Loescher, H., Vargas, R., Mirtl, M., Morris, B., Pauw, J., Yu, X., Kutsch, W., Mabee, P., Tang, J., Ruddell, B., Pulsifer, P., Bäck, J., Zacharias, S., Grant, M., Feig, G., Zheng, L., Waldmann, C., & Genazzio, M. Building a global ecosystem research infrastructure to address global grand challenges for macrosystem ecology. Earth’s Future, 10(5), (2022): e2020EF001696, https://doi.org/10.1029/2020ef001696.
    Description: The development of several large-, “continental”-scale ecosystem research infrastructures over recent decades has provided a unique opportunity in the history of ecological science. The Global Ecosystem Research Infrastructure (GERI) is an integrated network of analogous, but independent, site-based ecosystem research infrastructures (ERI) dedicated to better understand the function and change of indicator ecosystems across global biomes. Bringing together these ERIs, harmonizing their respective data and reducing uncertainties enables broader cross-continental ecological research. It will also enhance the research community capabilities to address current and anticipate future global scale ecological challenges. Moreover, increasing the international capabilities of these ERIs goes beyond their original design intent, and is an unexpected added value of these large national investments. Here, we identify specific global grand challenge areas and research trends to advance the ecological frontiers across continents that can be addressed through the federation of these cross-continental-scale ERIs.
    Description: This manuscript is in part the product of several workshops and ongoing GERI development. The first workshop was the Terrestrial Ecosystem Research Network (TERN) sponsored and entitled: “Towards a Global Ecosystem Observatory”, 5–7 March 2017, University of Queensland, Brisbane Australia. Another workshop was sponsored by Chinese Academy of Sciences (CAS) and entitled: “Global Integrated Research Infrastructure component in Next Generation ILTER”, 17–20 April, 2018, South China Botanical Garden, Zhaoqing, Guangdong Province, China. The National Science Foundation (NSF) supported two workshops. The first was entitled: ‘Building a Global Ecological Understanding’ held at the University of Delaware, Newark Delaware, 3–6 June, 2016 (NSF 1347883) and the second entitled: “Global Environmental Research Infrastructure (GERI) Planning Workshop”, held at NEON HQ, Boulder Colorado, 25–27 June 2019 (NSF 1917180). The authors wish to thank the workshop attendees for their thoughtful contributions. NEON is a project sponsored by the NSF and managed under cooperative support agreement (DBI-1029808) to Battelle.
    Keywords: Environmental research infrastructure ; Macrosystem science ; Interoperability ; Societal benefit ; New capabilities ; Federating infrastructure
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Little, C. M., Hu, A., Hughes, C. W., McCarthy, G. D., Piecuch, C. G., Ponte, R. M., & Thomas, M. D. The relationship between U.S. East Coast sea level and the Atlantic Meridional Overturning Circulation: a review. Journal of Geophysical Research-Oceans, 124(9), (2019): 6435-6458, doi:10.1029/2019JC015152.
    Description: Scientific and societal interest in the relationship between the Atlantic Meridional Overturning Circulation (AMOC) and U.S. East Coast sea level has intensified over the past decade, largely due to (1) projected, and potentially ongoing, enhancement of sea level rise associated with AMOC weakening and (2) the potential for observations of U.S. East Coast sea level to inform reconstructions of North Atlantic circulation and climate. These implications have inspired a wealth of model‐ and observation‐based analyses. Here, we review this research, finding consistent support in numerical models for an antiphase relationship between AMOC strength and dynamic sea level. However, simulations exhibit substantial along‐coast and intermodel differences in the amplitude of AMOC‐associated dynamic sea level variability. Observational analyses focusing on shorter (generally less than decadal) timescales show robust relationships between some components of the North Atlantic large‐scale circulation and coastal sea level variability, but the causal relationships between different observational metrics, AMOC, and sea level are often unclear. We highlight the importance of existing and future research seeking to understand relationships between AMOC and its component currents, the role of ageostrophic processes near the coast, and the interplay of local and remote forcing. Such research will help reconcile the results of different numerical simulations with each other and with observations, inform the physical origins of covariability, and reveal the sensitivity of scaling relationships to forcing, timescale, and model representation. This information will, in turn, provide a more complete characterization of uncertainty in relevant relationships, leading to more robust reconstructions and projections.
    Description: The authors acknowledge funding support from NSF Grant OCE‐1805029 (C. M. L.) and NASA Contract NNH16CT01C (C. M. L. and R. M. P.), the Regional and Global Model Analysis (RGMA) component of the Earth and Environmental System Modeling Program of the U.S. Department of Energy's Office of Biological & Environmental Research Cooperative Agreement DE‐FC02‐97ER62402 (A. H.), Natural Environment Research Council NE/K012789/1 (C. W. H.), Irish Marine Institute Project A4 PBA/CC/18/01 (G. D. M.), and NSF Awards OCE‐1558966 and OCE‐1834739 (C. G. P.). The National Center for Atmospheric Research is sponsored by National Science Foundation. The authors thank the two reviewers for their comments, and CLIVAR and the U.S. AMOC Science Team for inspiration and patience. All CMIP5 data used in Figures 4-6 are available at http://pcmdi9.llnl.gov/ website; the AMOC strength fields were digitized from Chen et al. (2018, supporting information Figure S3).
    Keywords: Sea level ; AMOC ; United States ; Coastal ; Climate model ; Review
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124 (2019): 7201-7225, doi: 10.1029/2019JC015520.
    Description: The oceanographic response and atmospheric forcing associated with downwelling along the Alaskan Beaufort Sea shelf/slope is described using mooring data collected from August 2002 to September 2004, along with meteorological time series, satellite data, and reanalysis fields. In total, 55 downwelling events are identified with peak occurrence in July and August. Downwelling is initiated by cyclonic low‐pressure systems displacing the Beaufort High and driving westerly winds over the region. The shelfbreak jet responds by accelerating to the east, followed by a depression of isopycnals along the outer shelf and slope. The storms last 3.25 ± 1.80 days, at which point conditions relax toward their mean state. To determine the effect of sea ice on the oceanographic response, the storms are classified into four ice seasons: open water, partial ice, full ice, and fast ice (immobile). For a given wind strength, the largest response occurs during partial ice cover, while the most subdued response occurs in the fast ice season. Over the two‐year study period, the winds were strongest during the open water season; thus, the shelfbreak jet intensified the most during this period and the cross‐stream Ekman flow was largest. During downwelling, the cold water fluxed off the shelf ventilates the upper halocline of the Canada Basin. The storms approach the Beaufort Sea along three distinct pathways: a northerly route from the high Arctic, a westerly route from northern Siberia, and a southerly route from south of Bering Strait. Differences in the vertical structure of the storms are presented as well.
    Description: The authors thank Paula Fratantoni and Dan Torres for processing the moored profiler and ADCP data, respectively. Data from the SBI mooring array can be found at https://archive.eol.ucar.edu/projects/sbi/all_data.shtml. Funding for the analysis was provided by the following grants: National Science Foundation Grants OCE‐1259618 (N. F. and R. P.), OCE‐1756361 (N. F.), and PLR‐1504333 (N. F. and R. P.); National Oceanic and Atmospheric Administration Grant NA14‐OAR4320158 (R. P. and P. L.); and the Natural Sciences and Engineering Research Council of Canada (K. M.).
    Description: 2020-04-16
    Keywords: Downwelling ; Beaufort Sea ; Shelfbreak ; North Slope ; Arctic cyclone
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Spooner, P. T., Thornalley, D. J. R., Oppo, D. W., Fox, A. D., Radionovskaya, S., Rose, N. L., Mallett, R., Cooper, E., & Roberts, J. M. Exceptional 20th century ocean circulation in the Northeast Atlantic. Geophysical Research Letters, 47(10), (2020): e2020GL087577, doi:10.1029/2020GL087577.
    Description: The North Atlantic subpolar gyre (SPG) connects tropical and high‐latitude waters, playing a leading role in deep‐water formation, propagation of Atlantic water into the Arctic, and as habitat for many ecosystems. Instrumental records spanning recent decades document significant decadal variability in SPG circulation, with associated hydrographic and ecological changes. Emerging longer‐term records provide circumstantial evidence that the North Atlantic also experienced centennial trends during the 20th century. Here, we use marine sediment records to show that there has been a long‐term change in SPG circulation during the industrial era, largely during the 20th century. Moreover, we show that the shift and late 20th century SPG configuration were unprecedented in the last 10,000 years. Recent SPG dynamics resulted in an expansion of subtropical ecosystems into new habitats and likely also altered the transport of heat to high latitudes.
    Description: We thank Janet Hope and UCL laboratory staff, colleagues who sailed on EN539, Kathryn Pietro‐Rose, Sean O'Keefe and Henry Abrams, Sara Chipperton, Tanya Monica, Laura Thrower and Kitty Green for sediment processing, Miles Irving for artwork assistance, James Rolfe for nitrogen isotope measurement, Maryline Vautravers and Michael Kucera for guidance, Arne Biastoch and Christian Mohn for discussion of VIKING20, and Chris Brierley, Meric Srokosz, and Jon Robson for comments. Funding was provided by National Science Foundation (NSF) grant OCE‐1304291 to D.W.O. and D.J.R.T., the Leverhulme Trust, National Environment Research Council (NERC) grant NE/S009736/1, and the ATLAS project to D.J.R.T. This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement 678760 (ATLAS). This paper reflects only the authors views and the European Union cannot be held responsible for any use that may be made of the information contained herein.
    Keywords: Foraminifera ; Subpolar gyre ; North Atlantic ; Ocean circulation ; Industrial era
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...