ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 05.04. Instrumentation and techniques of general interest  (9)
  • 2020-2023  (9)
  • 1965-1969
  • 1
    Publication Date: 2022-12-13
    Description: Da venerdì 4 novembre a domenica 6 novembre 2022, si è tenuta una esercitazione nazionale denominata “Exe Sisma dello Stretto 2022” in un'area del territorio della Regione Calabria e della Regione Sicilia caratterizzata da una elevatissima pericolosità sismica. L’esercitazione è stata indetta e coordinata dal Dipartimento della Protezione Civile e aveva l’obiettivo di verificare la risposta operativa a un evento sismico significativo del Servizio Nazionale della Protezione Civile, di cui anche l’Istituto Nazionale di Geofisica e Vulcanologia fa parte. Durante le tre giornate, l’INGV ha avuto modo di testare tutte le procedure che l’Istituto ha codificato a partire da quelle del “Protocollo di Ente per le emergenze sismiche e da maremoto”. Dopo che INGV ha dato l’avvio all’intera esercitazione simulando il terremoto di magnitudo MW 6.2 (ML 6.0) alle ore 09:00 UTC in provincia di Reggio Calabria (5 km a SW dal comune di Laganadi), e ha, quindi, inviato il messaggio per il potenziale maremoto con un livello di allerta arancione; inoltre, il Presidente INGV ha prontamente convocato l’Unità di Crisi e attivato tutti Gruppi Operativi. Questi ultimi, nell’ambito dello scenario esercitativo, hanno verificato che i flussi di comunicazione interna e tutte le attività necessarie in emergenza sismica, presenti nei relativi protocolli operativi, risultassero rispettati. L’obiettivo primario dell’esercitazione è stato quindi quello di validare le attività previste e di aggiornare il personale afferente ai Gruppi Operativi stessi. Tra di essi, SISMIKO, che rappresenta il GO dedicato al coordinamento delle reti sismiche mobili INGV in emergenza, nelle settimane precedenti l’esercitazione ha predisposto tutte le attività che intendeva testare, descrivendole brevemente nel Documento d’impianto INGV e con maggior dettaglio in quello del Gruppo Operativo. A pochi giorni dalla chiusura dell’esercitazione, un terremoto di magnitudo ML 5.7 (MW 5.5) registrato alle ore 06:07 UTC del 09 novembre 2022 ha spostato l’attenzione dalla simulazione alla realtà.
    Description: Istituto Nazionale di Geofisica e Vulcanologia
    Description: Published
    Description: 4T. Sismicità dell'Italia
    Description: 2SR TERREMOTI - Gestione delle emergenze sismiche e da maremoto
    Description: 1IT. Reti di monitoraggio e sorveglianza
    Description: 4IT. Banche dati
    Keywords: SISMIKO ; Esercitazione ; Exercise ; Rischio Sismico Seismic risk ; Seismic risk ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-02-16
    Description: We present the main features of the permanent monitoring system managed by the Istituto Nazionale di Geofisica e Vulcanologia-Osservatorio Vesuviano in the Campi Flegrei caldera. Eruptive history of this active volcano shows that the majority of the eruptive events has been characterised by high explosivity and was accompanied by pyroclastic density currents. Its last eruption occurred in AD 1538 and in the next centuries the Campi Flegrei caldera has experienced several episodes of bradyseism and also the progressive increasing of the urbanisation in the area (west of Naples). Monitoring the dynamics of a mainly explosive volcano completely embedded in a very populated area is a challenging task. In order to detect any variation in the physical and chemical parameters of the Campi Flegrei caldera, the Istituto Nazionale di Geofisica e Vulcanologia-Osservatorio Vesuviano manages a permanent multi-parametric monitoring system. All the recorded h24 continuous data are transmitted to the Monitoring Room of the Osservatorio Vesuviano in Naples, where they are acquired, processed and evaluated to define changes in the dynamical state of the volcano. The caldera, since the end of 2004, is experiencing a bradyseismic episode characterised by a low velocity rate uplift, low energy earthquakes and increasing in the magmatic components of fumarolic fluids. The monitoring and surveillance activity of the Campi Flegrei caldera plays a crucial role in the volcanic emergency plan that includes evacuation of approximately 500,000 people before the beginning of the eruption.
    Description: Published
    Description: 219-237
    Description: 6SR VULCANI – Servizi e ricerca per la società
    Description: 1IT. Reti di monitoraggio e sorveglianza
    Description: 2IT. Laboratori analitici e sperimentali
    Description: 4IT. Banche dati
    Keywords: Campi Flegrei ; Seismic Network ; cGNSS Network ; Tiltmeter Network ; Thermal Infrared Imagery Network ; Geochemical Network ; 04.03. Geodesy ; 04.06. Seismology ; 04.08. Volcanology ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-01-11
    Description: Immersive virtual reality can potentially open up interesting geological sites to students, academics and others who may not have had the opportunity to visit such sites previously. We study how users perceive the usefulness of an immersive virtual reality approach applied to Earth Sciences teaching and communication. During nine immersive virtual reality-based events held in 2018 and 2019 in various locations (Vienna in Austria, Milan and Catania in Italy, Santorini in Greece), a large number of visitors had the opportunity to navigate, in immersive mode, across geological landscapes reconstructed by cutting-edge, unmanned aerial system-based photogrammetry techniques. The reconstructed virtual geological environments are specifically chosen virtual geosites, from Santorini (Greece), the North Volcanic Zone (Iceland), and Mt. Etna (Italy). Following the user experiences, we collected 459 questionnaires, with a large spread in participant age and cultural background. We find that the majority of respondents would be willing to repeat the immersive virtual reality experience, and importantly, most of the students and Earth Science academics who took part in the navigation confirmed the usefulness of this approach for geo-education purposes.
    Description: This research has been provided in the framework of the following projects: (i) the MIUR project ACPR15T4_00098–Argo3D (http://argo3d.unimib.it/ (accessed on 26 November 2021)); (ii) 3DTeLC Erasmus + Project 2017-1-UK01-KA203-036719 (http://www.3dtelc.com (accessed on 26 November 2021)); (iii) EGU 2018 Public Engagement Grant (https://www.egu.eu/outreach/peg/ (accessed on 26 November 2021)). Agisoft Metashape is acknowledged for photogrammetric data processing. This article is also an outcome of Project MIUR–Dipartimenti di Eccellenza 2018–2022. Finally, this paper is an outcome of the Virtual Reality lab for Earth Sciences—GeoVires lab (https://geovires.unimib.it/ (accessed on 26 November 2021)). The work supports UNESCO IGCP 692 ‘Geoheritage for Resilience’.
    Description: Published
    Description: 9
    Description: 1TM. Formazione
    Description: JCR Journal
    Keywords: immersive virtual reality ; geology; ; photogrammetry; ; education; ; Iceland; ; Santorini ; Etna ; 04.04. Geology ; 05.03. Educational, History of Science, Public Issues ; 05.04. Instrumentation and techniques of general interest ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-06-07
    Description: The effect of water molecules on the electrostatic collection of 218Po ions onto the surface of silicon detectors (neutralization) is evaluated through the comparison with a scintillation cell (ZnS), not affected by air humidity. A radon monitor (RAD7, Durridge Company) was connected to a stainless steel radon chamber, equipped with the scintillation cell. Radon gas, extracted from an acidified RaCl2 source, was injected into the chamber and the amount of water molecules in the system was alternatively lowered or increased (from 0.00075 to 0.014 g of water in RAD7) by connecting the chamber to a desiccant or to a bubbling water bottle. The relative efficiency of the silicon detector with respect to the scintillation cell decreases with the growth of water molecules inside RAD7. This dependence, with a fixed i) electrostatic chamber geometry and ii) nominal high voltage, diverges during the humidification or the drying phase because it is in turn influenced by the length of interaction of polonium atoms with water molecules, which impacts on the size of 218Po clusters and thus on the neutralization process. For water contents higher that 0.01 g in RAD7, this effect is greatly enhanced. Temperature in the investigated range (18.5-35.6 °C) does not affect the efficiency of electrostatic collection-based silicon detectors. Based on these experiments, admitting a certain error on the efficiency (from 1.8 to 7.5%, depending on the water content), proper corrections were developed to adjust soil radon readings, when a desiccant is removed. This operation is necessary if recent Non-Aqueous Phase Liquids (NAPLs) leakage has occurred in the subsoil to avoid the sorption and possible later release of radon by Drierite, with related partition between the solid and liquid phases (water and NAPL).
    Description: Published
    Description: 146-153
    Description: 2IT. Laboratori analitici e sperimentali
    Description: JCR Journal
    Keywords: Soil radon ; RAD7 ; Scintillation cell ; 218Po neutralization by water vapor ; NAPL contamination ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-07-08
    Description: This work is devoted to the analysis of the background seismic noise acquired at the volcanoes (Campi Flegrei caldera, Ischia island, and Vesuvius) belonging to the Neapolitan volcanic district (Italy), and at the Colima volcano (Mexico). Continuous seismic acquisition is a complex mixture of volcanic transients and persistent volcanic and/or hydrothermal tremor, anthropogenic/ambient noise, oceanic loading, and meteo-marine contributions. The analysis of the background noise in a stationary volcanic phase could facilitate the identification of relevant waveforms often masked by microseisms and ambient noise. To address this issue, our approach proposes a machine learning (ML) modeling to recognize the “fingerprint” of a specific volcano by analyzing the background seismic noise from the continuous seismic acquisition. Specifically, two ML models, namely multi-layer perceptrons and convolutional neural network were trained to recognize one volcano from another based on the acquisition noise. Experimental results demonstrate the effectiveness of the two models in recognizing the noisy background signal, with promising performance in terms of accuracy, precision, recall, and F1 score. These results suggest that persistent volcanic signals share the same source information, as well as transient events, revealing a common generation mechanism but in different regimes. Moreover, assessing the dynamic state of a volcano through its background noise and promptly identifying any anomalies, which may indicate a change in its dynamics, can be a practical tool for real-time monitoring.
    Description: Published
    Description: 6835
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: seismic noise ; Neapolitan volcanoes ; Colima volcano ; multi-layer perceptrons ; convolutional neural network ; 04.08. Volcanology ; 05.04. Instrumentation and techniques of general interest ; 05.06. Methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-12-13
    Description: Il 09 novembre 2022 alle ore 06:07 UTC (07:07 ora italiana) un terremoto di magnitudo ML 5.7 (MW 5.5) è stato localizzato dal sistema di sorveglianza sismica dell’Istituto Nazionale di Geofisica e Vulcanologia (INGV). L'epicentro è stato localizzato nel Mar Adriatico ad una distanza di circa 30 km dalla costa marchigiana in provincia di Pesaro e Urbino, a circa 31 km dalla città di Fano e 35 km dal capoluogo di provincia Pesaro. Il mainshock è stato seguito da una replica di ML 5.2 a un minuto di distanza. I due terremoti sono stati ben avvertiti in tutta la regione Marche, e anche in tutto il centro Italia fino a Roma e nelle regioni del nord Italia. Il Presidente dell’INGV, come previsto nel Protocollo di Ente per le emergenze sismiche e da maremoto, ha prontamente convocato l’Unità di Crisi e attivato tutti i Gruppi Operativi. Tra questi SISMIKO, che coordina le reti sismiche mobili INGV in emergenza, si è attivato immediatamente preparando la strumentazione necessaria per l’installazione di una rete sismica temporanea e per l’integrazione dei dati in acquisizione nel sistema di monitoraggio e sorveglianza sismica dell’INGV. Parallelamente alle attività di coordinamento e gestione dell’emergenza sono state attivate tutte le procedure inerenti la divulgazione (report, siti web, ecc) e l’analisi dei dati preliminari. La rete temporanea in emergenza è stata installata nelle prime 24 ore dalla scossa principale ad integrazione della rete sismica permanente dell’INGV in area epicentrale. La rete temporanea di SISMIKO, costituita da 8 stazioni sismiche trasmesse in tempo reale, ha permesso di migliorare il monitoraggio dell’evoluzione della sequenza, abbassando la soglia di detezione degli eventi sismici in area epicentrale e consentendo quindi una migliore localizzazione da parte del servizio di sorveglianza sismica nazionale. La gestione dell’emergenza sismica è avvenuta a pochi giorni di distanza dall’ esercitazione nazionale denominata “EXE Sisma dello Stretto 2022” svoltasi dal 4 al 6 Novembre 2022 nel territorio della Regione Calabria e della Regione Sicilia. L’esercitazione è stata coordinata dal Dipartimento della Protezione Civile. Le attività svolte durante EXE 2022 sono state per l’istituto, e in particolare per SISMIKO, propedeutiche per il buon esito di tutte le azioni messe in campo dall’INGV sin dai primi minuti dall’accadimento del mainshock del 9 Novembre.
    Description: Istituto Nazionale di Geofisica e Vulcanologia
    Description: Published
    Description: 4T. Sismicità dell'Italia
    Description: 1SR TERREMOTI - Sorveglianza Sismica e Allerta Tsunami
    Description: 2SR TERREMOTI - Gestione delle emergenze sismiche e da maremoto
    Description: 1IT. Reti di monitoraggio e sorveglianza
    Keywords: SISMIKO ; Rete sismica mobile ; Seismic networks temporary ; Seismic emergency ; Emergenza sismica ; 05.04. Instrumentation and techniques of general interest ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-09-15
    Description: Innovations in virtual reality (VR) technology have led to exciting possibilities in teaching earth sciences, allowing students to experience complex geological sites that, due to cost and logistical reasons, they would not normally be able to experience. The need for high quality online digital learning resources and blended learning was brought to the forefront during the SARS-CoV-2 pandemic, as courses with a traditional physical field work component were forced to move online and provide alternatives to students. While it is unlikely that virtual field trips (VFT) would be accepted by students as a replacement of real-world fieldwork moving out of the pandemic, research shows promise that using IVR experiences can lead to enhanced learning outcomes in geosciences, warranting its inclusion on the curricula. This paper presents the outputs of a project to improve student learning in complex geological environments using VR. Here we outline a workflow that was developed to collect high resolution imagery using remote sensing to create digital outcrop models (DOM) of complex geological sites. Using this framework, this paper will then explore the use of VR for an investigation of the Husavik Triple Junction, a complex structural site in northern Iceland, explaining how the drone data was converted to a 3D DOM and demonstrating how VR can be used to simulate real world field mapping. Finally, we describe how these IVR activities have been integrated into taught modules at postgraduate level and discuss how the use of IVR experiences can complement existing geoscience curriculum design.
    Description: Erasmus+ Key Action 2 funded project 2017-1-UK01-KA203-036719 3DTeLC-Bringing the 3Dworld into the classroom: a new approach to Teaching, Learning and Communicating the science of geohazards in terrestrial and marine environments coordinated by M. Whitworth. (https://ec.europa.eu/programmes/erasmus-plus/projects/eplus-projectdetails/#project/2017-1-UK01-KA203-036719and http://www.3dtelc.com) and the MIUR Project ACPR15T4_00098–Argo3D, coordinated by A. Tibaldi (http://argo3d.unimib.it/).
    Description: Published
    Description: 104681
    Description: 1TM. Formazione
    Description: JCR Journal
    Keywords: Virtual reality ; Geosciences ; Teaching ; Fieldwork ; Structural geology ; Digital outcrop model ; 05.04. Instrumentation and techniques of general interest ; 04.04. Geology ; 05.03. Educational, History of Science, Public Issues
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-10-28
    Description: A representative fluid sampling of surface geothermal manifestations and its analytical data quality assurance and quality control (QA/QC) are challenging aspects of understanding the geothermal reservoir processes. To achieve these goals, an interlaboratory test for the chemical analyses of ten water samples: one synthetic water, two lake waters (i.e., duplicated), one stream water, and six water samples from two geothermal wells of Los Azufres Geothermal field (LAGF), Michoacan, Mexico, was conducted. The geothermal wells were sampled at four points: (1) total discharge of condensed fluid at the wellhead, (2) separate liquid condensed in the well separator, (3) flushed liquid at the weir box, and (4) separated vapor condensed at the well-separator (data taken from Verma et al., 2022). Sixteen laboratories from ten countries reported their results. The pH, electrical conductivity, Ca2+, Li+, SO4 2 B, and Si-total measurements were 8.35 ± 0.04, 12.25 ± 0.53 mS/cm, 25 ± 1 mg/l, 18 ± 1 mg/l, 569 ± 33 mg/l, 320 ± 21 mg/l, and 20.5 ± 0.7 mg/l, which are close to the conventional true values, 8.40, 12.31 mS/cm, 23 mg/l, 19 mg/l, 647 mg/l, 330 mg/l, and 20.0 mg/l, respectively. Analytical errors for major ions, Na+, Cl
    Description: Published
    Description: 105477
    Description: 2IT. Laboratori analitici e sperimentali
    Description: JCR Journal
    Keywords: Geothermal water ; Inter-laboratory test ; Geothermal system ; Los Azufres ; Geochemical modeling ; Uncertainty propagation ; NIST Uncertainty machine ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-27
    Description: Field-based classes in geological sciences are crucial components of geoscience education and research. Owing to the COVID-19 pandemic, such activities became problematic due to limitations such as travel restrictions and lockdown periods: this motivated the geoeducational community to tailor new ways to engage people in field activities. As a result, we adopted Immersive Virtual Reality as a tool to involve students, academics, and the lay public in field exploration, thus making geological exploration accessible also to people affected by permanent or temporary motor disabilities. In particular, we evaluated how users perceive the usefulness of this approach as applied to Earth Science learning and teaching, through nine outreach events, where a total of 459 participants were involved, with different ages and cultural backgrounds. The participants explored, in an immersive mode, four geological landscapes, defined as virtual geological environments, which have been reconstructed by cutting-edge, unmanned aerial system-based photogrammetry techniques. They include: Santorini (Greece), the North Volcanic Zone (Iceland), and Mt. Etna (Italy). After the exploration, each participant filled in an anonymous questionnaire. The results show that the majority would be willing to repeat the experience, and, most importantly, the majority of the students and Earth Science academics who took part in the navigation confirmed the usefulness of this technique for geo-education purposes. Our approach can be considered as a groundbreaking tool and an innovative democratic way to access information and experiences, as well as to promote inclusivity and accessibility in geo-education, while reducing travel costs, saving time, and decreasing the carbon footprint. This work has been carried out in the framework of the following projects: i) ACPR15T4_ 00098 “Agreement between the University of Milan Bicocca and the Cometa Consortium for the experimentation of cutting-edge interactive technologies for the improvement of science teaching and dissemination” of Italian Ministry of Education, University and Research (ARGO3D - https://argo3d.unimib.it/); ii) Erasmus+ Key Action 2 2017-1-UK01-KA203- 036719 “3DTeLC – Bringing the 3D-world into the classroom: a new approach to Teaching, Learning and Communicating the science of geohazards in terrestrial and marine environments” (http://3dtelc.lmv.uca.fr/; https://www.3dtelc.com/); iii) 2018 EGU Public Engagement Grants (https://www.egu.eu/outreach/peg/).
    Description: This work has been carried out in the framework of the following projects: i) ACPR15T4_ 00098 “Agreement between the University of Milan Bicocca and the Cometa Consortium for the experimentation of cutting-edge interactive technologies for the improvement of science teaching and dissemination” of Italian Ministry of Education, University and Research (ARGO3D - https://argo3d.unimib.it/); ii) Erasmus+ Key Action 2 2017-1-UK01-KA203- 036719 “3DTeLC – Bringing the 3D-world into the classroom: a new approach to Teaching, Learning and Communicating the science of geohazards in terrestrial and marine environments” (http://3dtelc.lmv.uca.fr/; https://www.3dtelc.com/); iii) 2018 EGU Public Engagement Grants (https://www.egu.eu/outreach/peg/).
    Description: Published
    Description: Vienna (Austria)
    Description: 1TM. Formazione
    Keywords: Virtual Reality ; geology ; tectonophysics ; education ; 04.07. Tectonophysics ; 05.03. Educational, History of Science, Public Issues ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...