ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Dispersal  (1)
  • Harmful algal bloom  (1)
  • National Academy of Sciences  (2)
  • EDP Sciences
  • Nature Publishing Group
  • 2020-2023  (2)
  • 1980-1984
Collection
Publisher
Years
  • 2020-2023  (2)
  • 1980-1984
Year
  • 1
    Publication Date: 2022-10-27
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Chakraborty, A., Ruff, S. E., Dong, X., Ellefson, E. D., Li, C., Brooks, J. M., McBee, J., Bernard, B. B., & Hubert, C. R. J. Hydrocarbon seepage in the deep seabed links subsurface and seafloor biospheres. Proceedings of the National Academy of Sciences of the United States of America, 117(20), (2020): 11029-11037, doi: 10.1073/pnas.2002289117.
    Description: Marine cold seeps transmit fluids between the subseafloor and seafloor biospheres through upward migration of hydrocarbons that originate in deep sediment layers. It remains unclear how geofluids influence the composition of the seabed microbiome and if they transport deep subsurface life up to the surface. Here we analyzed 172 marine surficial sediments from the deep-water Eastern Gulf of Mexico to assess whether hydrocarbon fluid migration is a mechanism for upward microbial dispersal. While 132 of these sediments contained migrated liquid hydrocarbons, evidence of continuous advective transport of thermogenic alkane gases was observed in 11 sediments. Gas seeps harbored distinct microbial communities featuring bacteria and archaea that are well-known inhabitants of deep biosphere sediments. Specifically, 25 distinct sequence variants within the uncultivated bacterial phyla Atribacteria and Aminicenantes and the archaeal order Thermoprofundales occurred in significantly greater relative sequence abundance along with well-known seep-colonizing members of the bacterial genus Sulfurovum, in the gas-positive sediments. Metabolic predictions guided by metagenome-assembled genomes suggested these organisms are anaerobic heterotrophs capable of nonrespiratory breakdown of organic matter, likely enabling them to inhabit energy-limited deep subseafloor ecosystems. These results point to petroleum geofluids as a vector for the advection-assisted upward dispersal of deep biosphere microbes from subsurface to surface environments, shaping the microbiome of cold seep sediments and providing a general mechanism for the maintenance of microbial diversity in the deep sea.
    Description: We wish to thank Jody Sandel as well as the crew of R/V GeoExplorer for collection of piston cores, onboard core processing, sample preservation, and shipment. Cynthia Kwan and Oliver Horanszky are thanked for assistance with amplicon library preparation. We also wish to thank Jayne Rattray, Daniel Gittins, and Marc Strous for valuable discussions and suggestions, and Rhonda Clark for research support. Collaborations with Andy Mort from the Geological Survey of Canada, and Richard Hatton from Geoscience Wales are also gratefully acknowledged. This work was financially supported by a Mitacs Elevate Postdoctoral Fellowship awarded to A.C.; an Alberta Innovates-Technology Futures/Eyes High Postdoctoral Fellowship to S.E.R.; and a Natural Sciences and Engineering Research Council Strategic Project Grant, a Genome Canada Genomics Applications Partnership Program grant, a Canada Foundation for Innovation grant (CFI-JELF 33752) for instrumentation, and Campus Alberta Innovates Program Chair funding to C.R.J.H.
    Keywords: Deep biosphere ; Microbiome ; Dispersal
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Anderson, D. M., Fachon, E., Pickart, R. S., Lin, P., Fischer, A. D., Richlen, M. L., Uva, V., Brosnahan, M. L., McRaven, L., Bahr, F., Lefebvre, K., Grebmeier, J. M., Danielson, S. L., Lyu, Y., & Fukai, Y. Evidence for massive and recurrent toxic blooms of Alexandrium catenella in the Alaskan Arctic. Proceedings of the National Academy of Sciences of the United States of America, 118(41) (2021): e2107387118, https://doi.org/10.1073/pnas.2107387118.
    Description: Among the organisms that spread into and flourish in Arctic waters with rising temperatures and sea ice loss are toxic algae, a group of harmful algal bloom species that produce potent biotoxins. Alexandrium catenella, a cyst-forming dinoflagellate that causes paralytic shellfish poisoning worldwide, has been a significant threat to human health in southeastern Alaska for centuries. It is known to be transported into Arctic regions in waters transiting northward through the Bering Strait, yet there is little recognition of this organism as a human health concern north of the Strait. Here, we describe an exceptionally large A. catenella benthic cyst bed and hydrographic conditions across the Chukchi Sea that support germination and development of recurrent, locally originating and self-seeding blooms. Two prominent cyst accumulation zones result from deposition promoted by weak circulation. Cyst concentrations are among the highest reported globally for this species, and the cyst bed is at least 6× larger in area than any other. These extraordinary accumulations are attributed to repeated inputs from advected southern blooms and to localized cyst formation and deposition. Over the past two decades, warming has likely increased the magnitude of the germination flux twofold and advanced the timing of cell inoculation into the euphotic zone by 20 d. Conditions are also now favorable for bloom development in surface waters. The region is poised to support annually recurrent A. catenella blooms that are massive in scale, posing a significant and worrisome threat to public and ecosystem health in Alaskan Arctic communities where economies are subsistence based.
    Description: Funding for D.M.A., R.S.P., E.F., P.L., A.D.F., V.U., M.L.B., L.M., F.B., and M.L.R. was provided by grants from the NSF Office of Polar Programs (Grants OPP-1823002 and OPP-1733564) and the National Ocanic and Atmospheric Administration (NOAA) Arctic Research program (through the Cooperative Institute for the North Atlantic Region [CINAR; Grants NA14OAR4320158 and NA19OAR4320074]), for J.M.G. through CINAR 22309.07 UMCES (University of Maryland Center for Environmental Science), and for D.M.A. and K.L. through NOAA’s Center for Coastal and Ocean Studies Ecology and Oceanography of Harmful Algal Blooms (ECOHAB) Program (NA20NOS4780195). Funding for D.M.A., M.L.R., M.L.B., E.F., V.U., and A.D.F. was also provided by NSF (Grant OCE-1840381) and NIH (Grant 1P01-ES028938-01) through the Woods Hole Center for Oceans and Human Health. S.L.D. was supported by North Pacific Research Board IERP Grants A91-99a and A91-00a. This is IERP publication ArcticIERP-41 and ECOHAB Contribution No. ECO983.
    Keywords: Harmful algal bloom ; HAB ; Alexandrium ; Alaskan Arctic ; Climate
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...