ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • West Antarctic Peninsula  (2)
  • Brackish coastal ecosystem  (1)
  • 2020-2023  (3)
  • 1990-1994
  • 1950-1954
  • 1
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Schultz, C., Doney, S. C., Zhang, W. G., Regan, H., Holland, P., Meredith, M. P., & Stammerjohn, S. Modeling of the influence of sea ice cycle and Langmuir circulation on the upper ocean mixed layer depth and freshwater distribution at the West Antarctic Peninsula. Journal of Geophysical Research: Oceans, 125(8), (2020): e2020JC016109, doi:10.1029/2020JC016109.
    Description: The Southern Ocean is chronically undersampled due to its remoteness, harsh environment, and sea ice cover. Ocean circulation models yield significant insight into key processes and to some extent obviate the dearth of data; however, they often underestimate surface mixed layer depth (MLD), with consequences for surface water‐column temperature, salinity, and nutrient concentration. In this study, a coupled circulation and sea ice model was implemented for the region adjacent to the West Antarctic Peninsula, a climatically sensitive region which has exhibited decadal trends towards higher ocean temperature, shorter sea ice season, and increasing glacial freshwater input, overlain by strong interannual variability. Hindcast simulations were conducted with different air‐ice drag coefficients and Langmuir circulation parameterizations to determine the impact of these factors on MLD. Including Langmuir circulation deepened the surface mixed layer, with the deepening being more pronounced in the shelf and slope regions. Optimal selection of an air‐ice drag coefficient also increased modeled MLD by similar amounts and had a larger impact in improving the reliability of the simulated MLD interannual variability. This study highlights the importance of sea ice volume and redistribution to correctly reproduce the physics of the underlying ocean, and the potential of appropriately parameterizing Langmuir circulation to help correct for biases towards shallow MLD in the Southern Ocean. The model also reproduces observed freshwater patterns in the West Antarctic Peninsula during late summer and suggests that areas of intense summertime sea ice melt can still show net annual freezing due to high sea ice formation during the winter.
    Description: C. Schultz and S. Doney acknowledge support by the U.S. National Science Foundation (grant PLR‐1440435 to the Palmer Long Term Ecological Research program) and support from the University of Virginia. W. G. Zhang acknowledge support by the U.S. National Science Foundation (grant OPP‐1643901). The MITgcm model is an open source model (mitgcm.org). The version used in this study, with added parameterizations and specific configurations, is on C. Schultz’s github (https://github.com/crisoceano/WAP_MITgcm). A copy of the files with specific configurations for this study, the forcing files needed for the simulations, and a copy of the files used for the KPP package are in three separate records on zenodo.org, under DOIs 10.5281/zenodo.3627365, 10.5281/zenodo.3627564, and 10.5281/zenodo.3627742.
    Keywords: West Antarctic Peninsula ; sea ice ; Langmuir circulation ; mixed layer depth ; glacial runoff
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bhatnagar, S., Cowley, E. S., Kopf, S. H., Pérez Castro, S., Kearney, S., Dawson, S. C., Hanselmann, K., & Ruff, S. E. Microbial community dynamics and coexistence in a sulfide-driven phototrophic bloom. Environmental Microbiome, 15(1),(2020): 3, doi:10.1186/s40793-019-0348-0.
    Description: Background: Lagoons are common along coastlines worldwide and are important for biogeochemical element cycling, coastal biodiversity, coastal erosion protection and blue carbon sequestration. These ecosystems are frequently disturbed by weather, tides, and human activities. Here, we investigated a shallow lagoon in New England. The brackish ecosystem releases hydrogen sulfide particularly upon physical disturbance, causing blooms of anoxygenic sulfur-oxidizing phototrophs. To study the habitat, microbial community structure, assembly and function we carried out in situ experiments investigating the bloom dynamics over time. Results: Phototrophic microbial mats and permanently or seasonally stratified water columns commonly contain multiple phototrophic lineages that coexist based on their light, oxygen and nutrient preferences. We describe similar coexistence patterns and ecological niches in estuarine planktonic blooms of phototrophs. The water column showed steep gradients of oxygen, pH, sulfate, sulfide, and salinity. The upper part of the bloom was dominated by aerobic phototrophic Cyanobacteria, the middle and lower parts by anoxygenic purple sulfur bacteria (Chromatiales) and green sulfur bacteria (Chlorobiales), respectively. We show stable coexistence of phototrophic lineages from five bacterial phyla and present metagenome-assembled genomes (MAGs) of two uncultured Chlorobaculum and Prosthecochloris species. In addition to genes involved in sulfur oxidation and photopigment biosynthesis the MAGs contained complete operons encoding for terminal oxidases. The metagenomes also contained numerous contigs affiliating with Microviridae viruses, potentially affecting Chlorobi. Our data suggest a short sulfur cycle within the bloom in which elemental sulfur produced by sulfide-oxidizing phototrophs is most likely reduced back to sulfide by Desulfuromonas sp. Conclusions: The release of sulfide creates a habitat selecting for anoxygenic sulfur-oxidizing phototrophs, which in turn create a niche for sulfur reducers. Strong syntrophism between these guilds apparently drives a short sulfur cycle that may explain the rapid development of the bloom. The fast growth and high biomass yield of Chlorobi-affiliated organisms implies that the studied lineages of green sulfur bacteria can thrive in hypoxic habitats. This oxygen tolerance is corroborated by oxidases found in MAGs of uncultured Chlorobi. The findings improve our understanding of the ecology and ecophysiology of anoxygenic phototrophs and their impact on the coupled biogeochemical cycles of sulfur and carbon.
    Description: This work was carried out at the Microbial Diversity summer course at the Marine Biological Laboratory in Woods Hole, MA. The course was supported by grants from National Aeronautics and Space Administration, the US Department of Energy, the Simons Foundation, the Beckman Foundation, and the Agouron Institute. Additional funding for SER was provided by the Marine Biological Laboratory.
    Keywords: Microbial succession ; Green sulfur bacteria ; Prosthecochloris ; Syntrophy ; Brackish coastal ecosystem ; Anoxygenic phototrophy ; Microviridae ; Sulfur cycling ; CRISPR-Cas ; Resilience
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Schultz, C., Doney, S. C., Hauck, J., Kavanaugh, M. T., & Schofield, O. Modeling phytoplankton blooms and inorganic carbon responses to sea-ice variability in the West Antarctic Peninsula. Journal of Geophysical Research: Biogeosciences, 126(4), (2021): e2020JG006227, https://doi.org/10.1029/2020JG006227.
    Description: The ocean coastal-shelf-slope ecosystem west of the Antarctic Peninsula (WAP) is a biologically productive region that could potentially act as a large sink of atmospheric carbon dioxide. The duration of the sea-ice season in the WAP shows large interannual variability. However, quantifying the mechanisms by which sea ice impacts biological productivity and surface dissolved inorganic carbon (DIC) remains a challenge due to the lack of data early in the phytoplankton growth season. In this study, we implemented a circulation, sea-ice, and biogeochemistry model (MITgcm-REcoM2) to study the effect of sea ice on phytoplankton blooms and surface DIC. Results were compared with satellite sea-ice and ocean color, and research ship surveys from the Palmer Long-Term Ecological Research (LTER) program. The simulations suggest that the annual sea-ice cycle has an important role in the seasonal DIC drawdown. In years of early sea-ice retreat, there is a longer growth season leading to larger seasonally integrated net primary production (NPP). Part of the biological uptake of DIC by phytoplankton, however, is counteracted by increased oceanic uptake of atmospheric CO2. Despite lower seasonal NPP, years of late sea-ice retreat show larger DIC drawdown, attributed to lower air-sea CO2 fluxes and increased dilution by sea-ice melt. The role of dissolved iron and iron limitation on WAP phytoplankton also remains a challenge due to the lack of data. The model results suggest sediments and glacial meltwater are the main sources in the coastal and shelf regions, with sediments being more influential in the northern coast.
    Description: C. Schultz, S. C. Doney, M. T. Kavanaugh, and O. Schofield acknowledge support by the US National Science Foundation (Grant no. PLR-1440435), and C. Schultz and S. C. Doney acknowledge support from the University of Virginia. This research has also received funding from the Helmholtz Young Investigator Group Marine Carbon and Ecosystem Feedbacks in the Earth System (MarESys), Grant number VH-NG-1301.
    Keywords: Air-sea fluxes ; Biogeochemical modeling ; Inorganic carbon cycle ; Phytoplankton bloom ; Sea ice ; West Antarctic Peninsula
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...