ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Anoxic waters  (1)
  • carbon  (1)
  • 2020-2023  (1)
  • 1995-1999  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Aquatic geochemistry 1 (1995), S. 53-88 
    ISSN: 1573-1421
    Keywords: Anoxic waters ; the Framvaren fjord
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract In the summer of 1993, a number of chemical parameters (H2S, O2, pH, TA, TCO2, NH 4 + , PO 4 3− , SiO2, Mn2+ and Fe2+) were measured in the Framvaren Fjord, a permanently super-anoxic fjord in southern Norway. The extremely steep gradient of sulfide near the interface suggests that other than downward flux of oxygen, three other possible oxidants, particulate manganese and iron oxides, phototrophic sulfur oxidation bacteria and horizontally transported oxygen account for the oxidation of the upward flux of H2S. Water intrusion through the sill accounts for the temperature inflection above the interface, which, together with internal waves (Stigerbrandt and Molvaer, 1988), may cause fluctuations of the depth of interface. Significant gradients of hydrographic properties and chemical species between 80–100 m suggest that there is a “second interface” at about 90 m that separates the deep and older bottom waters. A stoichiometric model is applied to examine the biogeochemical cycles of S, C, N and P in the Framvaren. High C:S, C:N and C:P ratios are found while the nutrients (N, P) have Redfield ratio. Based on the C:N:P ratio of 155:16:1 in organic matter, about 30% of sulfide produced by sulfate reduction is estimated to be removed by processes such as oxidation, formation of FeS2, degassing and incorporation into organic matter. The rates of oxidation of H2S by Mn and Fe oxides in the water near the interface were slightly faster than the observed values in the laboratory, probably due to the presence of bacteria.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(5), (2020): e2019JC015920, doi:10.1029/2019JC015920.
    Description: A major surface circulation feature of the Arctic Ocean is the Transpolar Drift (TPD), a current that transports river‐influenced shelf water from the Laptev and East Siberian Seas toward the center of the basin and Fram Strait. In 2015, the international GEOTRACES program included a high‐resolution pan‐Arctic survey of carbon, nutrients, and a suite of trace elements and isotopes (TEIs). The cruises bisected the TPD at two locations in the central basin, which were defined by maxima in meteoric water and dissolved organic carbon concentrations that spanned 600 km horizontally and ~25–50 m vertically. Dissolved TEIs such as Fe, Co, Ni, Cu, Hg, Nd, and Th, which are generally particle‐reactive but can be complexed by organic matter, were observed at concentrations much higher than expected for the open ocean setting. Other trace element concentrations such as Al, V, Ga, and Pb were lower than expected due to scavenging over the productive East Siberian and Laptev shelf seas. Using a combination of radionuclide tracers and ice drift modeling, the transport rate for the core of the TPD was estimated at 0.9 ± 0.4 Sv (106 m3 s−1). This rate was used to derive the mass flux for TEIs that were enriched in the TPD, revealing the importance of lateral transport in supplying materials beneath the ice to the central Arctic Ocean and potentially to the North Atlantic Ocean via Fram Strait. Continued intensification of the Arctic hydrologic cycle and permafrost degradation will likely lead to an increase in the flux of TEIs into the Arctic Ocean.
    Description: Funding for Arctic GEOTRACES was provided by the U.S. National Science Foundation, Swedish Research Council Formas, French Agence Nationale de la Recherche and LabexMER, Netherlands Organization for Scientific Research, and Independent Research Fund Denmark. Data from GEOTRACES cruises GN01 (HLY1502) and GN04 (PS94) have been archived at the Biological and Chemical Oceanography Data Management Office (Biological and Chemical Oceanography Data Management Office (BCO‐DMO); https://www.bco-dmo.org/deployment/638807) and PANGAEA (https://www.pangaea.de/?q=PS94&f.campaign%5B%5D=PS94) websites, respectively. The inorganic carbon data are available at the NOAA Ocean Carbon Data System (OCADS; doi:10.3334/CDIAC/OTG.CLIVAR_ARC01_33HQ20150809).
    Description: 2020-10-08
    Keywords: Arctic Ocean ; Transpolar Drift ; trace elements ; carbon ; nutrients ; GEOTRACES]
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...