ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (24)
  • 2020-2023  (24)
Collection
Language
Years
Year
  • 1
    Publication Date: 2022-06-22
    Description: Groundwater (GW) is the world’s largest distributed freshwater storage for mankind, ecosystems, and is a key resource for industrial and agricultural demands. Due to its fundamental role in the Earth's water and energy cycles, groundwater has been declared as an Essential Climate Variable (ECV) by GCOS, the Global Climate Observing System. However, within Copernicus - the European Earth Observation Programme - there is no service available yet to deliver data on this fundamental resource, nor is there any other data source worldwide that operationally provides information on changing groundwater resources in a consistent way, observation-based, and with global coverage. Therefore, the Global Gravity-based Groundwater Product (G3P) project aims at developing an operational global groundwater service as a cross-cutting extension of the existing Copernicus - the European Earth Observation Programme - portfolio. G3P capitalizes from the unique capability of GRACE and GRACE-FO satellite gravimetry as the only remote sensing technology to monitor subsurface mass variations, and from other satellite-based water storage products that are already part of the Copernicus portfolio, to provide a data set of groundwater storage change for large areas with global coverage. G3P is obtained by using a mass balance approach, i.e., by subtracting satellite-based water storage compartments (WSCs) such as snow water equivalent, root-zone soil moisture, glacier mass, and surface water storage from GRACE/GRACE-FO monthly terrestrial water storage anomalies (TWSA). Compatibility of the observation-based WSCs with TWSA is achieved by a filtering process, where optimal filter types were derived by analyses of spatial correlation patterns. G3P groundwater variations are provided for almost two decades (from 2002 to the present), with the monthly resolution, and at a 0.5-degree spatial resolution globally. In this contribution, we also illustrate preliminary results of the G3P data set and of its uncertainties, as well as its evaluation by independent groundwater data. This study has been run in the context of the European Union’s Horizon 2020 research project G3P (Global Gravity-based Groundwater Product, grant agreement nº 870353).
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-14
    Description: Due to the fundamental role of Groundwater (GW) in the Earth's water and energy cycles, GW has been declared as an Essential Climate Variable (ECV) by GCOS, the Global Climate Observing System. However, within Copernicus - the European Earth Observation Programme - there is no service available yet to deliver data on this fundamental resource, nor is there any other data source worldwide that operationally provides information on changing groundwater resources in a consistent way, observation-based, and with global coverage. Hence, the Global Gravity-based Groundwater Product (G3P) aims at developing a satellite-based groundwater storage (GW) data set as a new product for the EU Copernicus Climate Change Service. G3P capitalizes from the unique capability of GRACE and GRACE-FO satellite gravimetry as the only remote sensing technology to monitor subsurface mass variations, and from other satellite-based water storage products to provide a data set of groundwater storage change for large areas with global coverage. G3P is obtained by using a mass balance approach, i.e., by subtracting satellite-based water storage compartments (WSCs) such as snow water equivalent, root-zone soil moisture, glacier mass, and surface water storage from GRACE/GRACE-FO monthly terrestrial water storage anomalies (TWSA). For a consistent subtraction of all individual WSCs from GRACE-TWSA, the individual WSCs are filtered in a similar way as GRACE-TWSA, where optimal filter types were derived by analyses of spatial correlation patterns. G3P groundwater variations are provided for almost two decades (from 04-2002 to 12-2020), with monthly resolution, and at a 0.5-degree spatial resolution globally. In this contribution, we also illustrate some results of the G3P data set and of its uncertainties, as well as its evaluation by independent in-situ groundwater observation.
    Type: info:eu-repo/semantics/lecture
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-07-06
    Description: The Global Gravity-based Groundwater Product (G3P) aims at developing a satellite-based groundwater storage (GW) data set as a new product for the EU Copernicus Climate Change Service. As the world’s largest distributed freshwater storage, GW is a key resource for mankind, industrial, and agricultural demands. In Copernicus, there is no service available yet to deliver data on this fundamental resource, nor is there any other data source worldwide that operationally provides information on changing groundwater resources in a consistent way, observation-based, and with global coverage. Therefore, G3P develops an operational global groundwater service as a cross-cutting extension of the existing Copernicus portfolio. G3P capitalizes from the unique capability of GRACE and GRACE-FO satellite gravimetry as the only remote sensing technology to monitor subsurface mass variations, and from other satellite-based water storage products to provide a data set of groundwater storage change for large areas with global coverage. G3P is obtained by using a mass balance approach, i.e., by subtracting satellite-based water storage compartments (WSCs) such as snow water equivalent, root-zone soil moisture, glacier mass, and surface water storage from GRACE/GRACE-FO monthly terrestrial water storage anomalies (TWSA). For a consistent subtraction of all individual WSCs from GRACE-TWSA, the individual WSCs are filtered in a similar way as GRACE-TWSA, where optimal filter types were derived by analyses of spatial correlation patterns. G3P groundwater variations are provided for almost two decades (from 2002 to the present), with the monthly resolution, and at a 0.5-degree spatial resolution globally. In this contribution, we also illustrate preliminary results of the G3P data set and of its uncertainties, as well as its evaluation by independent groundwater data. This study has received funding from the European Union’s Horizon 2020 research and innovation programme for G3P (Global Gravity-based Groundwater Product) under grant agreement nº 870353.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-03-10
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-04-28
    Description: Al Sistema de Fallas de Algeciras (SFA), se le han asignado cuatro sismos históricos desde finales del siglo XVIII, que en términos de magnitud recalculada desde análisis macrosísmicos tuvieron una magnitud M〉6.5. Uno de estos, el del 9 de febrero de 1967, fue registrado instrumentalmente con Mw 7.2. En este trabajo se realizó un estudio del sector norte de este sistema de fallas entre los 3° y 4°N. Entre el 31 de octubre de 2016 y el 18 de julio de 2018, se presentaron cuatro sismos con Mw〉4.8, que la Red Sismológica Nacional de Colombia (RSNC) localizó en el municipio de Colombia, departamento del Huila, asignándolos a fallas del SFA. Luego, en diciembre 24 de 2019, se presentó un sismo con Mw 6.0, que se asignó a la Falla Algeciras perteneciente al SFA en el departamento del Meta. En esta investigación se encontró que los sismos de la región de Colombia se produjeron en las fallas Altamira y Nazareth, las cuales son fallas inversas en un contexto tectono - estratigráfico diferente al SFA. El SFA al norte de los 3°N define en esta región el piedemonte llanero. Para las fallas Altamira y Nazareth, los mecanismos focales indicaron fallas inversas, mientras que en la región de Mesetas estos mecanismos obedecieron a fallas transcurrentes concordantes con el SFA. Dada la alta generación de sismos con Mw〉5.0 en estas fallas en un lapso inferior a 10 años, se establece que su potencial sismogénico contribuye de manera importante a la amenaza sísmica del centro y el suroccidente de Colombia, sin embargo, en este trabajo se encontró además que la denominada Falla Algeciras, principal componente del SFA por la literatura, está segmentada y no es continua, por lo que se debe revaluar su potencial sismogénico
    Description: Published
    Description: 111-134
    Description: 3T. Fisica dei terremoti e Sorgente Sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-04-28
    Description: En este trabajo se muestra cómo un gran sismo originado en el Sistema de Fallas de la Falla Frontal de la Cordillera Oriental (SFFFCO) puede causar grandes daños y pérdidas de vidas, tanto en el área metropolitana de Bogotá, D. C., como en el resto de la Sabana de Bogotá. El grado de la amenaza sísmica de la ciudad ante un sismo cercano, originado en el Piedemonte Llanero, cuya distancia es inferior a 250 km y con una magnitud 〉 7.0, es muy alto, si se tiene presente que sus suelos, de origen lagunar, se ubican hacia el occidente y el noroccidente, zonas en las que, durante las dos últimas décadas, se ha ido extendiendo el área metropolitana.
    Description: Published
    Description: 73-91
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: N/A or not JCR
    Keywords: seismichazard ; bogota ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ward, N. D., Megonigal, J. P., Bond-Lamberty, B., Bailey, V. L., Butman, D., Canuel, E. A., Diefenderfer, H., Ganju, N. K., Goni, M. A., Graham, E. B., Hopkinson, C. S., Khangaonkar, T., Langley, J. A., McDowell, N. G., Myers-Pigg, A. N., Neumann, R. B., Osburn, C. L., Price, R. M., Rowland, J., Sengupta, A., Simard, M., Thornton, P. E., Tzortziou, M., Vargas, R., Weisenhorn, P. B., & Windham-Myers, L. Representing the function and sensitivity of coastal interfaces in earth system models. Nature Communications, 11(1), (2020): 2458, doi:10.1038/s41467-020-16236-2.
    Description: Between the land and ocean, diverse coastal ecosystems transform, store, and transport material. Across these interfaces, the dynamic exchange of energy and matter is driven by hydrological and hydrodynamic processes such as river and groundwater discharge, tides, waves, and storms. These dynamics regulate ecosystem functions and Earth’s climate, yet global models lack representation of coastal processes and related feedbacks, impeding their predictions of coastal and global responses to change. Here, we assess existing coastal monitoring networks and regional models, existing challenges in these efforts, and recommend a path towards development of global models that more robustly reflect the coastal interface.
    Description: Funding for this work was provided by Pacific Northwest National Laboratory (PNNL) Laboratory Directed Research & Development (LDRD) as part of the Predicting Ecosystem Resilience through Multiscale Integrative Science (PREMIS) Initiative. PNNL is operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RL01830. Additional support to J.P.M. was provided by the NSF-LTREB program (DEB-0950080, DEB-1457100, DEB-1557009), DOE-TES Program (DE-SC0008339), and the Smithsonian Institution. This manuscript was motivated by discussions held by co-authors during a three-day workshop at PNNL in Richland, WA: The System for Terrestrial Aquatic Research (STAR) Workshop: Terrestrial-Aquatic Research in Coastal Systems. The authors thank PNNL artist Nathan Johnson for preparing the figures in this manuscript and Terry Clark, Dr. Charlette Geffen, and Dr. Nancy Hess for their aid in organizing the STAR workshop. The authors thank all workshop participants not listed as authors for their valuable insight: Lihini Aluwihare (contributed to biogeochemistry discussions and development of concept for Fig. 3), Gautam Bisht (contributed to modeling discussion), Emmett Duffy (contributed to observational network discussions), Yilin Fang (contributed to modeling discussion), Jeremy Jones (contributed to biogeochemistry discussions), Roser Matamala (contributed to biogeochemistry discussions), James Morris (contributed to biogeochemistry discussions), Robert Twilley (contributed to biogeochemistry discussions), and Jesse Vance (contributed to observational network discussions). A full report on the workshop discussions can be found at https://www.pnnl.gov/publications/star-workshop-terrestrial-aquatic-research-coastal-systems.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-12-13
    Description: Poás is a complex stratovolcano with an altitude of 2,708 m asl, located in the Cordillera Volcánica Central of Costa Rica. Prior to 2017, the last three historical eruptions occurred on 7 February 1834, between January and May 1910 and during the period 1953-1955. Very few literature exists on the 1834 eruption. The only references state that it was an important event, that ash reached 〉53 km W-SW of Poás, and that it harmed the grasslands around the volcano. Related deposits of this eruption suggest phreatic activity, which launched bombs and blocks. Moreover, there is evidence of pyroclastic flow deposits near the crater. The 1910 eruption is better described. Despite the fact that ash fall is only reported near the volcano, a volume of the deposit of 1.6 x 107 m3 is estimated. Deposits of the eruption are white in color with many hydrothermally altered, and minor presence of juvenile fragments (vesicular lapilli). The eruption is classified as vulcanian, with deposits of ash fall and pyroclastic flows close to the crater. A Volcano Explosivity Index 3 (VEI 3) is estimated. The eruption affected agriculture. The 1953-1955 eruptions had a longer duration. Various ash fall deposits at several sites are reported. Deposits of this eruption, easily distinguished in the field, are black scoria lapilli, bombs with, sometimes fusiform, bread crust textures. In the eastern sector of the crater bombs can reach meters in size; such large bombs near the eruption centre at one side suggest the inclination of the eruptive conduct, or an asymmetrical vent-crater system. Inside the crater a 40 m-high dome and a lava flow were extruded during the eruption. Towards the east side of the current Laguna Caliente crater lake, relicts of a 8.5 m thick lava pool are found. During the entire eruptive episode, the acid lake presumably lacked. The eruption is described to be of a mixed type: strombolian, phreatomagmatic, vulcanian and dome extrusion eruptions. Considering the characteristics of this eruption, the height of the eruption column, ejected volume (2.1 x 107  m3), and its presumed duration, a VEI 3 is estimated. The eruptions damaged agricultural activity (including cattle), and forced the spontaneous evacuation of some people. In April 2017 magmatic eruptions followed a decade-long period of intense phreatic activity. These eruptions destroyed the 1953-1955 Dome and led to the complete dry out of Laguna Caliente. Pyroclastic cones and sulphur volcanism manifested at the bottom of the former crater lake bottom. The 2017 eruption severely affected touristic activities at and near Poás, with an estimated economic loss of 20 million dollars. By May-August 2018 Laguna Caliente reappeared. The volcanic hazards related to the three studied historical eruptions are: pyroclastic flows (at least 1 km from the eruptive centre, including reaching the current mirador sector), ballistics (bomb ejections up to 2 km from the emission centre), dispersion and fall of pyroclasts (tens of kms), gas emission and acid rain, dispersed by WSW dominant winds, and lahars in most of the river canyons SW of the volcano.  
    Description: Published
    Description: 261-299
    Description: 1V. Storia eruttiva
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-12-22
    Description: The purpose of the EUNADICS-AV (European Natural Airborne Disaster Information and Coordination System for Aviation) prototype early warning system (EWS) is to develop the combined use of harmonised data products from satellite, ground-based and in situ instruments to produce alerts of airborne hazards (volcanic, dust, smoke and radionuclide clouds), satisfying the requirement of aviation air traffic management (ATM) stakeholders (https://cordis.europa.eu/project/id/723986, last access: 5 November 2021). The alert products developed by the EUNADICS-AV EWS,i.e. near-real-time (NRT) observations, email notifications and netCDF (Network Common Data Form) alert data products (called NCAP files), have shown significant interest in using selective detection of natural airborne hazards from polar-orbiting satellites. The combination of several sensors inside a single global system demonstrates the advantage of using a triggered approach to obtain selective detection from observations, which cannot initially discriminate the different aerosol types. Satellite products from hyperspectral ultraviolet–visible (UV–vis) and infrared (IR) sensors (e.g. TROPOMI – TROPOspheric Monitoring Instrument – and IASI – Infrared Atmospheric Sounding Interferometer) and a broadband geostationary imager (Spinning Enhanced Visible and InfraRed Imager; SEVIRI) and retrievals from groundbased networks (e.g. EARLINET – European Aerosol Research Lidar Network, E-PROFILE and the regional network from volcano observatories) are combined by our system to create tailored alert products (e.g. selective ash detection, SO2 column and plume height, dust cloud, and smoke from wildfires). A total of 23 different alert products are implemented, using 1 geostationary and 13 polar-orbiting satellite platforms, 3 external existing service, and 2 EU and 2 regional ground-based networks. This allows for the identification and the tracking of extreme events. The EUNADICS-AV EWS has also shown the need to implement a future relay of radiological data (gamma dose rate and radionuclides concentrations in ground-level air) in the case of a nuclear accident. This highlights the interest of operating early warnings with the use of a homogenised dataset. For the four types of airborne hazard, the EUNADICS-AV EWS has demonstrated its capability to provide NRT alert data products to trigger data assimilation and dispersion modelling providing forecasts and inverse modelling for source term estimate. Not all of our alert data products (NCAP files) are publicly disseminated. Access to our alert products is currently restricted to key users (i.e. Volcanic Ash Advisory Centres, national meteorological services, the World Meteorological Organization, governments, volcano observatories and research collaborators), as these are considered pre-decisional products. On the other hand, thanks to the EUNADICS-AV–SACS (Support to Aviation Control Service) web interface (https: //sacs.aeronomie.be, last access: 5 November 2021), the main part of the satellite observations used by the EUNADICS-AV EWS is shown in NRT, with public email notification of volcanic emission and delivery of tailored images and NCAP files. All of the ATM stakeholders (e.g. pilots, airlines and passengers) can access these alert products through this free channel.
    Description: Published
    Description: 3367–3405
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-06-22
    Description: As a result of global warming, the marine ecosystem around the North Pole, the Central Arctic Ocean (CAO), is in fast transition from a permanently to a seasonally ice-covered ocean. The sea-ice loss is expected to enable summer access to the CAO for non-icebreaking ships, including fishery vessels, in the near future1. However, the lack of knowledge on the CAO ecosystem impedes any assessment of the sustainability of potential future fisheries in the CAO. Taking a precautionary approach, the EU and nine countries in October 2018 signed the Agreement to Prevent Unregulated High Seas Fisheries in the Central Arctic Ocean. This agreement entered into force in June 2021 and a.o. requires the establishment of a joint scientific program to improve the understanding of the CAO ecosystem, including mapping and monitoring. To reduce the existing lack of knowledge, 12 scientists from the EFICA Consortium participated, together with 26 other on-board scientists, in sampling and data collection of ecosystem data during the Swedish SAS-Oden expedition in summer 2021. This report describes the field work performed by the EFICA scientists using water-column acoustics, deep-sea optical observations, and fish, zooplankton, sediment otolith and eDNA sampling for targeting fish, zooplankton and mammals. Further ecosystem data (physical, chemical and biological) were collected by the EFICA scientists in collaboration with other scientists on-board. Together with this report, a metadata database containing lists of all collected samples and data that are relevant for future fish-stock modelling and assessment studies was delivered to the European Commission.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Other , notRev , info:eu-repo/semantics/other
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...