ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    facet.materialart.
    Unknown
    American Geophysical Union
    In:  EPIC3American Geophysical Union Conference 2021, Hybrid Online and in New Orleans, 2021-12-13-2021-12-17AGU 2021, American Geophysical Union
    Publication Date: 2022-02-15
    Description: As air temperatures rise and sea ice cover declines in the Arctic, permafrost coastal cliffs thaw more rapidly and wave energy rises. Thus, as the open water season continues to lengthen, climate change triggers a large part of the Arctic shoreline to become increasingly vulnerable to erosion. Arctic erosion supplies nutrient-laden and carbon-rich sediment into nearshore ecosystems. A retreating coastline also has consequences for residential, cultural, and industrial infrastructure. Despite its importance, erosion is currently neglected in global climate models, and existing physics-based numerical models of Arctic shoreline erosion are too complex and regionally-focused to be applied on a pan-Arctic scale. Here, we apply our simplified numerical erosion model, ArcticBeach v1.0, to the entire Arctic coastline. ArcticBeach v1.0 has previously been shown to simulate retreat rates at two sites that differ substantially in their main mechanisms of retreat (sub-aerial erosion/thaw slumping versus notch/block erosion). The model uses heat and sediment volume balances in order to predict horizontal cliff retreat and vertical erosion of a fronting beach. It contains an erosion module that uses empirical equations to estimate cross-shore sediment transport, coupled to a storm surge module forced by wind. We present Arctic maps of regional variation in trends in 2-meter air temperature, sea ice concentration, and wind speed.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-19
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography and Paleoclimatology 36(7), (2021): e2020PA004088, https://doi.org/10.1029/2020PA004088.
    Description: We reconstruct deep water-mass salinities and spatial distributions in the western North Atlantic during the Last Glacial Maximum (LGM, 19–26 ka), a period when atmospheric CO2 was significantly lower than it is today. A reversal in the LGM Atlantic meridional bottom water salinity gradient has been hypothesized for several LGM water-mass reconstructions. Such a reversal has the potential to influence climate, ocean circulation, and atmospheric CO2 by increasing the thermal energy and carbon storage capacity of the deep ocean. To test this hypothesis, we reconstructed LGM bottom water salinity based on sedimentary porewater chloride profiles in a north-south transect of piston cores collected from the deep western North Atlantic. LGM bottom water salinity in the deep western North Atlantic determined by the density-based method is 3.41–3.99 ± 0.15% higher than modern values at these sites. This increase is consistent with: (a) the 3.6% global average salinity change expected from eustatic sea level rise, (b) a northward expansion of southern sourced deep water, (c) shoaling of northern sourced deep water, and (d) a reversal of the Atlantic's north-south deep water salinity gradient during the LGM.
    Description: This work was supported by the US National Science Foundation (grant numbers 1433150 and 1537485).
    Description: 2021-10-24
    Keywords: Carbon cycle ; Climate change ; Deep water ; Glaciation ; Meridional overturning circulation ; Paleosalinity ; Porewater
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 35(5), (2021): e2020GB006706, https://doi.org/10.1029/2020GB006706.
    Description: The Southern Ocean plays a critical role in regulating global uptake of atmospheric CO2. Trace elements like iron (Fe), cobalt (Co), and manganese (Mn) have been shown to modulate this primary productivity. Despite limited data, the vertical profiles for Mn, Fe, and Co in the Ross Sea show no evidence of scavenging, as typically observed in oceanic sites. This was previously attributed to low-particle abundance and/or by mixing rates exceeding scavenging rates. Scavenging of some trace metals such as cobalt (Co) is thought to be largely governed by Mn (oxyhydr)oxides, assumed to be the main component of particulate Mn (pMn). However, our data show that pMn has an average oxidation state below 3 and with nondetectable Mn oxides. In addition, soluble Co profiles show no evidence of scavenging and Co uptake measurements show little Co uptake in the euphotic zone and low/no scavenging at depth. Instead, high concentrations of dissolved Mn (dMn, up to 90 nM), which is primarily complexed as Mn(III)-L (up to 100%), are observed. Average dMn concentrations (10 ± 14 nM) are highest in bottom and surface waters. Manganese sources may include sediments and sea-ice melt, as elevated dMn was measured in sea ice (12 nM) compared to its surrounding waters (3 nM), and sea ice dMn was 97% Mn(III)-L. We contend that the lack of Co scavenging in the Ross Sea is due to a unique Mn redox cycle that favors the stabilization of Mn(III)-complexes at the expense of Mn oxide particle formation.
    Description: The authors acknowledge support from the NSF 1643684 (MS), NSF 1644073 (GRD), NSF OCE-1355720 (CMH), and the Woods Hole Oceanographic Institution Post-Doctoral Scholarship (VEO). The Stanford Synchrotron Radiation Lightsource was utilized in this study. Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515.
    Description: 2021-10-30
    Keywords: Cobalt ; Manganese ; Redox ; Ross sea ; Scavenging ; Southern Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-12-06
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 49(11), (2022): e2021GL097618, https://doi.org/10.1029/2021GL097618.
    Description: Krypton-81 dating provides new insights into the timing, mechanisms, and extent of meteoric flushing versus retention of saline fluids in the subsurface in response to changes in geologic and/or climatic forcings over 50 ka to 1.2 Ma year timescales. Remnant Paleozoic seawater-derived brines associated with evaporites in the Paradox Basin, Colorado Plateau, are beyond the 81Kr dating range (〉1.2 Ma) and have likely been preserved due to negative fluid buoyancy and low permeability. 81Kr dating of formation waters above the evaporites indicates topographically-driven meteoric recharge and salt dissolution since the Late Pleistocene (0.03–0.8 Ma). Formation waters below the evaporites (up to 3 km depth), in basal aquifers, contain relatively young meteoric water components (0.4–1.1 Ma based on 81Kr) that partially flushed remnant brines and dissolved evaporites. We demonstrate that recent, rapid denudation of the Colorado Plateau (〈4–10 Ma) activated deep, basinal-scale flow systems as recorded in 81Kr groundwater age distributions.
    Description: Funding for this research was provided by the W.M. Keck Foundation, CIFAR Earth 4D Subsurface Science and Exploration program, NSF EAR (#2120733), National Key Research and Development Program of China (Grant No. 2016YFA0302200), and National Natural Science Foundation of China (Grants No. 41727901). McIntosh and Ballentine are fellows of the CIFAR Earth4D Subsurface Science and Exploration program.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-27
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 126(5), (2021): e2020JC016863, https://doi.org/10.1029/2020JC016863.
    Description: From late-summer 2013 to late-summer 2014, a total of 20 moorings were maintained on the eastern Chukchi Sea shelf as part of five independent field programs. This provided the opportunity to analyze an extensive set of timeseries to obtain a broad view of the mean and seasonally varying hydrography and circulation over the course of the year. Year-long mean bottom temperatures reflected the presence of the strong coastal circulation pathway, while mean bottom salinities were influenced by polynya/lead activity along the coast. The timing of the warm water appearance in spring/summer is linked to advection along the various flow pathways. The timing of the cold water appearance in fall/winter was not reflective of advection nor related to the time of freeze-up. Near the latitude of Barrow Canyon, the cold water was accompanied by freshening. A one-dimensional mixed-layer model demonstrates that wind mixing, due to synoptic storms, overturns the water column resulting in the appearance of the cold water. The loitering pack ice in the region, together with warm southerly winds, melted ice and provided an intermittent source of fresh water that was mixed to depth according to the model. Farther north, the ambient stratification prohibits wind-driven overturning, hence the cold water arrives from the south. The circulation during the warm and cold months of the year is different in both strength and pattern. Our study highlights the multitude of factors involved in setting the seasonal cycle of hydrography and circulation on the Chukchi shelf.
    Description: The authors are extremely grateful to all of these individuals, and to the funding agencies that supported the respective field programs: The Bureau of Ocean Energy Management; The National Oceanic and Atmospheric Administration; The National Science Foundation; and The Japanese Agency for Marine-Earth Science and Technology. Support for this analysis was provided by the following grants: National Oceanic and Atmospheric Administration grant NA14OAR4320158; National Science Foundation grants PLR-1504333, OPP-1733564, PLR-1758565; North Pacific Research Board grants A91-99a and A91-00a; Chinese Arctic and Antarctic grant CXPT2020009; Natural Sciences and Engineering Research Council of Canada.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Jackson, R. L., Gabric, A. J., Matrai, P. A., Woodhouse, M. T., Cropp, R., Jones, G. B., Deschaseaux, E. S. M., Omori, Y., McParland, E. L., Swan, H. B., & Tanimoto, H. Parameterizing the impact of seawater temperature and irradiance on dimethylsulfide (DMS) in the Great Barrier Reef and the contribution of coral reefs to the global sulfur cycle. Journal of Geophysical Research:Oceans, 126(3), (2021): e2020JC016783, https://doi.org/10.1029/2020JC016783.
    Description: Biogenic emissions of dimethylsulfide (DMS) are an important source of sulfur to the atmosphere, with implications for aerosol formation and cloud albedo over the ocean. Natural aerosol sources constitute the largest uncertainty in estimates of aerosol radiative forcing and climate and thus, an improved understanding of DMS sources is needed. Coral reefs are strong point sources of DMS; however, this coral source of biogenic sulfur is not explicitly included in climatologies or in model simulations. Consequently, the role of coral reefs in local and regional climate remains uncertain. We aim to improve the representation of tropical coral reefs in DMS databases by calculating a climatology of seawater DMS concentration (DMSw) and sea-air flux in the Great Barrier Reef (GBR), Australia. DMSw is calculated from remotely sensed observations of sea surface temperature and photosynthetically active radiation using a multiple linear regression model derived from field observations of DMSw in the GBR. We estimate that coral reefs and lagoon waters in the GBR (∼347,000 km2) release 0.03–0.05 Tg yr−1 of DMS (0.02 Tg yr−1 of sulfur). Based on this estimate, global tropical coral reefs (∼600,000 km2) could emit 0.08 Tg yr−1 of DMS (0.04 Tg yr−1 of sulfur), with the potential to influence the local radiative balance.
    Description: Australian Research Council. Grant Number: DP150101649 National Science Foundation (NSF). Grant Number: 1543450 Ministry of Education, Culture, Sports, Science and Technology Grants-in-Aid for Scientific Research. Grant Number: 23310016,16H02967,24241010,15H01732 Ministry of Education, Culture, Sports, Science and Technology Grant-in-Aid for Young Scientists. Grant Number: 17K12812
    Keywords: Coral reef ; Dimethylsulfide (DMS) ; Photosynthetically active radiation ; Physiological stress ; Sea-air flux ; Sea surface temperature
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-01-23
    Description: Nitric oxide (NO) is emitted in large quantities from coal-burning power plants. During the day, the plumes from these sources are efficiently mixed into the boundary layer, while at night, they may remain concentrated due to limited vertical mixing during which they undergo horizontal fanning. At night, the degree to which NO is converted to HNO3 and therefore unable to participate in next-day ozone (O3) formation depends on the mixing rate of the plume, the composition of power plant emissions, and the composition of the background atmosphere. In this study, we use observed plume intercepts from the Wintertime INvestigation of Transport, Emissions and Reactivity campaign to test sensitivity of overnight NOx removal to the N2O5 loss rate constant, plume mixing rate, background O3, and background levels of volatile organic compounds using a 2-D box model of power plant plume transport and chemistry. The factor that exerted the greatest control over NOx removal was the loss rate constant of N2O5. At the lowest observed N2O5 loss rate constant, no other combination of conditions converts more than 10% of the initial NOx to HNO3. The other factors did not influence NOx removal to the same degree. Published 2018. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-02-15
    Description: The combined application of continuous Global Positioning System data (high temporal resolution) with spaceborne interferometric synthetic aperture radar data (high spatial resolution) can reveal much more about the complexity of large landslide movement than is possible with geodetic measurements tied to only a few specific measurement sites. This approach is applied to an ~4 km2 reactivated translational landslide in the Columbia River Gorge (Washington State), which moves mainly during the winter rainy season. Results reveal the complex three-dimensional shape of the landslide mass, how onset of sliding relates to cumulative rainfall, how surface velocity during sliding varies with location on the topographically complex landslide surface, and how the ground surface subsides slightly in weeks prior to downslope sliding. ©2018. American Geophysical Union. All Rights Reserved.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-05-16
    Description: (U-Th)/He data were obtained for four minerals (baddeleyite-BHe, titanite-THe, zircon-ZHe, apatite-AHe) from the 2.06 Ga Phalaborwa carbonatite complex and nearby Archean basement of the Kaapvaal craton, South Africa. Our goals are to evaluate the relative He temperature sensitivities of these phases, better understand how radiation damage and other factors affect them, and inform aspects of the craton's thermal history. BHe dates overlap with Phalaborwa emplacement and record the highest temperatures of the dated phases. THe dates are 700–1,100 Ma and display a limited negative date-eU correlation. ZHe dates are negatively correlated with eU, are younger (561–32 Ma) and have higher eU than the THe data, with the highest-eU grains younger than the AHe dates. AHe dates are reproducible with a mean of 107 ± 7 Ma. The THe and ZHe data show radiation damage reduction of their He retentivities manifested as the negative date-eU correlations. Alpha dose estimates for zircon are several orders of magnitude higher than for titanite, consistent with the ZHe dates recording lower temperatures and a younger portion of the history than the THe dates. Thermal history modeling yields time-temperature paths that (1) explain the AHe, ZHe, and THe data while honoring existing geologic constraints, thus demonstrating the internal consistency of the data set, (2) imply possible reheating during Namaqua-Natal orogenesis, and (3) limit maximum probable temperatures to ∼180°C during 300–183 Ma Karoo basin burial. The results show that exploiting multiple (U-Th)/He thermochronometers and radiation damage effects can provide new insights into long-term craton evolution. © 2018. American Geophysical Union. All Rights Reserved.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...