ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-05-13
    Description: The uncertain response of marine terminating outlet glaciers to climate change at time scales beyond short-term observation limits models of future sea level rise. At temperate tidewater margins, abundant subglacial meltwater forms morainal banks (marine shoals) or ice-contact deltas that reduce water depth, stabilizing grounding lines and slowing or reversing glacial retreat. Here we present a radiocarbon-dated record from Integrated Ocean Drilling Program (IODP) Site U1421 that tracks the terminus of the largest Alaskan Cordilleran Ice Sheet outlet glacier during Last Glacial Maximum climate transitions. Sedimentation rates, ice-rafted debris, and microfossil and biogeochemical proxies, show repeated abrupt collapses and slow advances typical of the tidewater glacier cycle observed in modern systems. When global sea level rise exceeded the local rate of bank building, the cycle of readvances stopped leading to irreversible retreat. These results support theory that suggests sediment dynamics can control tidewater terminus position on an open shelf under temperate conditions delaying climate-driven retreat.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-29
    Description: The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  mdrymon@disl.org | http://aquaticcommons.org/id/eprint/14532 | 403 | 2014-02-14 20:00:41 | 14532 | United States National Marine Fisheries Service
    Publication Date: 2021-06-27
    Description: Identification of the spatial scale at which marine communities are organized is critical to proper management, yet this is particularly difficult to determine for highly migratory species like sharks. We used shark catch data collected during 2006–09 from fishery-independent bottom-longline surveys, as well as biotic and abiotic explanatory data to identify the factors that affect the distribution ofcoastal sharks at 2 spatial scales in the northern Gulf of Mexico. Centered principal component analyses (PCAs) were used to visualize the patterns that characterize shark distributions at small (Alabama and Mississippi coast) and large (northern Gulf of Mexico) spatial scales. Environmental data on temperature, salinity, dissolved oxygen (DO), depth, fish and crustacean biomass, and chlorophyll-a (chl-a) concentration were analyzed with normed PCAs at both spatial scales. The relationships between values of shark catch per unit of effort (CPUE) and environmental factors were then analyzed at each scale with co-inertia analysis (COIA). Results from COIA indicated that the degree of agreement between the structure of the environmental and shark data sets was relatively higher at the small spatial scale than at the large one. CPUE of Blacktip Shark (Carcharhinus limbatus) was related positively with crustacean biomass at both spatial scales. Similarly, CPUE of Atlantic Sharpnose Shark (Rhizoprionodonterraenovae) was related positively with chl-a concentrationand negatively with DO at both spatial scales. Conversely, distribution of Blacknose Shark (C. acronotus) displayed a contrasting relationship with depth at the 2 scales considered. Our results indicate that the factors influencing the distribution of sharks in the northern Gulf of Mexico are species specific but generally transcend the spatial boundaries used in our analyses.
    Keywords: Biology ; Ecology ; Fisheries
    Repository Name: AquaDocs
    Type: article , TRUE
    Format: application/pdf
    Format: application/pdf
    Format: 370-380
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  http://aquaticcommons.org/id/eprint/8757 | 403 | 2012-06-11 18:32:51 | 8757 | United States National Marine Fisheries Service
    Publication Date: 2021-06-26
    Description: Multiyear ichthyoplankton surveys used to monitor larval fish seasonality, abundance, and assemblage structure can provide early indicators of regional ecosystem changes.Numerous ichthyoplankton surveys have been conducted in the northern Gulf of Mexico, but few have had high levels of temporal resolution and sample replication. In this study, ichthyoplankton samples were collected monthly (October 2004–October 2006) at a single station off the coast ofAlabama as part of a long-term biological survey. Four seasonal periods were identified from observed andhistoric water temperatures, including a relatively long (June–October) “summer” period (water temperature 〉26°C). Fish egg abundance, total larval abundance, and larvaltaxonomic diversity were significantly related to water temperature (but not salinity), with peaks in the spring,spring–summer, and summer periods, respectively. Larvae collected during the survey represented 58 differentfamilies, of which engraulids, sciaenids, carangids, and clupeids were the most prominent. The most abundant taxa collected were unidentified engraulids (50%), sand seatrout(Cynoscion arenarius, 7.5%), Atlantic bumper (Chloroscombrus chrysurus, 5.4%), Atlantic croaker (Micropogonias undulatus, 4.4%), Gulf menhaden (Brevoortia patronus, 3.8%), and unidentified gobiids (3.6%). Larvalconcentrations for dominant taxa were highly variable between years, but the timing of seasonal occurrence forthese taxa was relatively consistent. Documented increases in sea surface temperature on the Alabama shelf may have various implications for larval fish dynamics, as indicated by the presence of tropical larval forms (e.g., fistularids, labrids, scarids, and acanthurids) in our ichthyoplankton collections and in recent juvenile surveysof Alabama and northern Gulf of Mexico seagrass habitats.
    Keywords: Biology ; Ecology ; Fisheries
    Repository Name: AquaDocs
    Type: article , TRUE
    Format: application/pdf
    Format: application/pdf
    Format: 193-207
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  http://aquaticcommons.org/id/eprint/8962 | 403 | 2012-08-03 18:18:09 | 8962 | United States National Marine Fisheries Service
    Publication Date: 2021-06-29
    Description: Because of a lack of fishery-dependent data, assessment of the recovery of fish stocks that undergo the most aggressive form of management, namely harvest moratoriums, remains a challenge. Large schools of red drum (Sciaenops ocellatus) were common along the northern Gulf of Mexico until the late 1980s when increased fishing effort quickly depleted the stock. After 24 years of harvest moratorium on red drum in federal waters, the stock is in need of reassessment; however, fisherydependent data are not available in federal waters and fishery-independent data are limited. We document the distribution, age composition, growth, and condition of red drum in coastal waters of the north central Gulf of Mexico, using data collected from a nearshore, randomized, bottom longline survey. Age composition of the fishery-independent catch indicates low mortality of fish age 6 and above and confirms the effectiveness of the federal fishing moratorium. Bottom longline surveys may be a cost-effective method for developing fishery-independent indices for red drum provided additional effort can be added to nearshore waters (〈20 m depth). As with most stocks under harvest bans, effective monitoring of the recovery of red drum will require the development of fishery-independent indices. With limited economic incentive to evaluate non-exploitedstocks, the most cost-effective approach to developing such monitoring is expansion of existing fishery independentsurveys. We examine this possibility for red drum in theGulf of Mexico and recommend the bottom longline survey conducted by the National Marine Fisheries Service expand effort in nearshore areas to allow for the development of long-term abundance indices for red drum.
    Keywords: Ecology ; Fisheries ; Management
    Repository Name: AquaDocs
    Type: article
    Format: application/pdf
    Format: application/pdf
    Format: 283-292
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-10-15
    Description: Porosity and its distribution in impact craters has an important effect on the petrophysical properties of impactites: seismic wave speeds and reflectivity, rock permeability, strength, and density. These properties are important for the identification of potential craters and the understanding of the process and consequences of cratering. The Chicxulub impact structure, recently drilled by the joint International Ocean Discovery Program and International Continental scientific Drilling Program Expedition 364, provides a unique opportunity to compare direct observations of impactites with geophysical observations and models. Here, we combine small-scale petrographic and petrophysical measurements with larger-scale geophysical measurements and numerical simulations of the Chicxulub impact structure. Our aim is to assess the cause of unusually high porosities within the Chicxulub peak ring and the capability of numerical impact simulations to predict the gravity signature and the distribution and texture of porosity within craters. We show that high porosities within the Chicxulub peak ring are primarily caused by shock-induced microfracturing. These fractures have preferred orientations, which can be predicted by considering the orientations of principal stresses during shock, and subsequent deformation during peak ring formation. Our results demonstrate that numerical impact simulations, implementing the Dynamic Collapse Model of peak ring formation, can accurately predict the distribution and orientation of impact-induced microfractures in large craters, which plays an important role in the geophysical signature of impact structures.
    Keywords: 551.8 ; cratering ; porosity ; Chicxulub ; fractures
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-05-05
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-05-12
    Description: The intestinal mucosa exists in dynamic balance with trillions of luminal microbes. Disruption of the intestinal epithelial barrier, commonly observed in mucosal inflammation and diseases such as inflammatory bowel diseases (IBDs), is often associated with dysbiosis, particularly decreases in species producing short-chain fatty acids (SCFAs), such as butyrate. It remains unclear to what extent microbiota-derived factors contribute to the overall maintenance of intestinal homeostasis. Initial studies revealed that butyrate selectively promotes epithelial barrier function and wound healing. We aimed to define the specific mechanism(s) through which butyrate contributes to these epithelial responses. Guided by an unbiased profiling approach, we identified the dominant regulation of the actin-binding protein synaptopodin (SYNPO). Extensions of this work revealed a role for SYNPO in intestinal epithelial barrier function and wound healing. SYNPO was localized to the intestinal epithelial tight junction and within F-actin stress fibers where it is critical for barrier integrity and cell motility. Butyrate, but not other SCFAs, induced SYNPO in epithelial cell lines and murine colonic enteroids through mechanisms possibly involving histone deacetylase inhibition. Moreover, depletion of the microbiota abrogated expression of SYNPO in the mouse colon, which was rescued with butyrate repletion. Studies inSynpo-deficient mice demonstrated exacerbated disease susceptibility and increased intestinal permeability in a dextran sulfate sodium colitis model. These findings establish a critical role for the microbiota and their products, specifically butyrate, in the regulated expression of SYNPO for intestinal homeostasis and reveal a direct mechanistic link between microbiota-derived butyrate and barrier restoration.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-08-12
    Description: Subseafloor mixing of high-temperature hot-spring fluids with cold seawater creates intermediate-temperature diffuse fluids that are replete with potential chemical energy. This energy can be harnessed by a chemosynthetic biosphere that permeates hydrothermal regions on Earth. Shifts in the abundance of redox-reactive species in diffuse fluids are often interpreted to reflect the direct influence of subseafloor microbial activity on fluid geochemical budgets. Here, we examine hydrothermal fluids venting at 44 to 149 °C at the Piccard hydrothermal field that span the canonical 122 °C limit to life, and thus provide a rare opportunity to study the transition between habitable and uninhabitable environments. In contrast with previous studies, we show that hydrocarbons are contributed by biomass pyrolysis, while abiotic sulfate (SO42−) reduction produces large depletions in H2. The latter process consumes energy that could otherwise support key metabolic strategies employed by the subseafloor biosphere. Available Gibbs free energy is reduced by 71 to 86% across the habitable temperature range for both hydrogenotrophic SO42−reduction to hydrogen sulfide (H2S) and carbon dioxide (CO2) reduction to methane (CH4). The abiotic H2sink we identify has implications for the productivity of subseafloor microbial ecosystems and is an important process to consider within models of H2production and consumption in young oceanic crust.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-08-06
    Description: Virus entry is a multistep process. It initiates when the virus attaches to the host cell and ends when the viral contents reach the cytosol. Genetically unrelated viruses can subvert analogous subcellular mechanisms and use similar trafficking pathways for successful entry. Antiviral strategies targeting early steps of infection are therefore appealing, particularly when the probability for successful interference through a common step is highest. We describe here potent inhibitory effects on content release and infection by chimeric vesicular stomatitis virus (VSV) containing the envelope proteins of Zaire ebolavirus (VSV-ZEBOV) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (VSV-SARS-CoV-2) elicited by Apilimod and Vacuolin-1, small-molecule inhibitors of the main endosomal phosphatidylinositol-3-phosphate/phosphatidylinositol 5-kinase, PIKfyve. We also describe potent inhibition of SARS-CoV-2 strain 2019-nCoV/USA-WA1/2020 by Apilimod. These results define tools for studying the intracellular trafficking of pathogens elicited by inhibition of PIKfyve kinase and suggest the potential for targeting this kinase in developing small-molecule antivirals against SARS-CoV-2.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...