ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (8)
  • Springer  (1)
  • Ferdinand Schöningh
  • PANGAEA
  • 2020-2022  (9)
  • 1
    Publication Date: 2020-08-18
    Description: This paper describes the Global Climate Observing System (GCOS) Reference Upper-Air Network (GRUAN) approach to managing the transition from the Vaisala RS92 to the Vaisala RS41 as the operational radiosonde. The goal of GRUAN is to provide long-term high-quality reference observations of upper-air essential climate variables (ECVs) such as temperature and water vapor. With GRUAN data being used for climate monitoring, it is vital that the change of measurement system does not introduce inhomogeneities to the data record. The majority of the 27 GRUAN sites were launching the RS92 as their operational radiosonde, and following the end of production of the RS92 in the last quarter of 2017, most of these sites have now switched to the RS41. Such a large-scale change in instrumentation is unprecedented in the history of GRUAN and poses a challenge for the network. Several measurement programs have been initiated to characterize differences in biases, uncertainties, and noise between the two radiosonde types. These include laboratory characterization of measurement errors, extensive twin sounding studies with RS92 and RS41 on the same balloon, and comparison with ancillary data. This integrated approach is commensurate with the GRUAN principles of traceability and deliberate redundancy. A 2-year period of regular twin soundings is recommended, and for sites that are not able to implement this, burden-sharing is employed such that measurements at a certain site are considered representative of other sites with similar climatological characteristics. All data relevant to the RS92–RS41 transition are archived in a database that will be accessible to the scientific community for external scrutiny. Furthermore, the knowledge and experience gained regarding GRUAN's RS92–RS41 transition will be extensively documented to ensure traceability of the process. This documentation will benefit other networks in managing changes in their operational radiosonde systems. Preliminary analysis of the laboratory experiments indicates that the manufacturer's calibration of the RS41 temperature and humidity sensors is more accurate than for the RS92, with uncertainties of
    Print ISSN: 2193-0856
    Electronic ISSN: 2193-0864
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-11-16
    Description: Soil redistribution on arable land is a major threat for a sustainable use of soil resources. The majority of soil redistribution studies focus on water erosion, while wind and tillage erosion also induce pronounced redistribution of soil materials. Tillage erosion especially is understudied, as it does not lead to visible off-site damages. The analysis of on-site/in-field soil redistribution is mostly based on tracer studies, where radionuclide tracers (e.g. 137Cs, 239+240Pu) from nuclear weapon tests are commonly used to derive the erosion history over the past 50–60 years. Tracer studies allow us to determine soil redistribution patterns but integrate all types of soil redistribution processes and hence do not allow us to unravel the contribution of individual erosion processes. The aim of this study is to understand the contribution of water and tillage erosion leading to soil patterns found in a small hummocky ground moraine kettle hole catchment under intensive agricultural use. Therefore, 239+240Pu-derived soil redistribution patterns were analysed using an inverse modelling approach accounting for water and tillage erosion processes. The results of this analysis clearly point out that tillage erosion is the dominant process of soil redistribution in the study catchment, which also affects the hydrological and sedimentological connectivity between arable land and the kettle hole. A topographic change up to 17 cm (53 yr)−1 in the eroded parts of the catchment is not able to explain the current soil profile truncation that exceeds the 239+240Pu-derived topographic change substantially. Hence, tillage erosion already started before the onset of intense mechanisation since the 1960s. In general, the study stresses the urgent need to consider tillage erosion as a major soil degradation process that can be the dominant soil redistribution process in sloped arable landscapes.
    Print ISSN: 2199-3971
    Electronic ISSN: 2199-398X
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-12-01
    Description: This paper is motivated by the fact that, although temperature readings made by Vaisala RS41 radiosondes at GRUAN sites (https://www.gruan.org/, last access: 30 November 2020) are given at 1 s resolution, for various reasons, missing data are spread along the atmospheric profile. Such a problem is quite common with radiosonde data and other profile data. Hence, (linear) interpolation is often used to fill the gaps in published data products. From this perspective, the present paper considers interpolation uncertainty, using a statistical approach to understand the consequences of substituting missing data with interpolated data. In particular, a general framework for the computation of interpolation uncertainty based on a Gaussian process (GP) set-up is developed. Using the GP characteristics, a simple formula for computing the linear interpolation standard error is given. Moreover, the GP interpolation is proposed as it provides an alternative interpolation method with its standard error. For the Vaisala RS41, the two approaches are shown to provide similar interpolation performances using an extensive cross-validation approach based on the block-bootstrap technique. Statistical results about interpolation uncertainty at various GRUAN sites and for various missing gap lengths are provided. Since both approaches result in an underestimation of the interpolation uncertainty, a bootstrap-based correction formula is proposed. Using the root mean square error, it is found that, for short gaps, with an average length of 5 s, the average uncertainty is less than 0.10 K. For larger gaps, it increases up to 0.35 K for an average gap length of 30 s and up to 0.58 K for a gap of 60 s. It is concluded that this approach could be implemented in a future version of the GRUAN data processing.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-03-13
    Description: Future crop production will be affected by climatic changes. In several regions, the projected changes in total rainfall and seasonal rainfall patterns will lead to lower soil water storage (SWS), which in turn affects crop water uptake, crop yield, water use efficiency (WUE), grain quality and groundwater recharge. Effects of climate change on those variables depend on the soil properties and were often estimated based on model simulations. The objective of this study was to investigate the response of key variables in four different soils and for two different climates in Germany with a different aridity index (AI): 1.09 for the wetter (range: 0.82 to 1.29) and 1.57 for the drier (range: 1.19 to 1.77) climate. This is done by using high-precision weighable lysimeters. According to a “space-for-time” (SFT) concept, intact soil monoliths that were moved to sites with contrasting climatic conditions have been monitored from April 2011 until December 2017. Evapotranspiration (ET) was lower for the same soil under the relatively drier climate, whereas crop yield was significantly higher, without affecting grain quality. Especially “non-productive” water losses (evapotranspiration out of the main growing period) were lower, which led to a more efficient crop water use in the drier climate. A characteristic decrease of the SWS for soils with a finer texture was observed after a longer drought period under a drier climate. The reduced SWS after the drought remained until the end of the observation period which demonstrates carry-over of drought from one growing season to another and the overall long-term effects of single drought events. In the relatively drier climate, water flow at the soil profile bottom showed a small net upward flux over the entire monitoring period as compared to downward fluxes (groundwater recharge) or drainage in the relatively wetter climate and larger recharge rates in the coarser- as compared to finer-textured soils. The large variability of recharge from year to year and the long-lasting effects of drought periods on the SWS imply that long-term monitoring of soil water balance components is necessary to obtain representative estimates. Results confirmed a more efficient crop water use under less-plant-available soil moisture conditions. Long-term effects of changing climatic conditions on the SWS and ecosystem productivity should be considered when trying to develop adaptation strategies in the agricultural sector.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-03-11
    Description: In this paper, we compare column-averaged dry-air mole fractions of water vapor (XH2O) retrievals from the COllaborative Carbon Column Observing Network (COCCON) with retrievals from two co-located high-resolution Fourier transform infrared (FTIR) spectrometers as references at two boreal sites, Kiruna, Sweden, and Sodankylä, Finland, from 6 March 2017 to 20 September 2019. In the framework of the Network for the Detection of Atmospheric Composition Change (NDACC), an FTIR spectrometer is operated at Kiruna. The H2O product derived from these observations has been generated with the MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water (MUSICA) processor. In Sodankylä, a Total Carbon Column Observing Network (TCCON) spectrometer is operated, and the official XH2O data as provided by TCCON are used for this study. The datasets are in good overall agreement, with COCCON data showing a wet bias of (49.20±58.61) ppm ((3.33±3.37) %, R2=0.9992) compared with MUSICA NDACC and (56.32±45.63) ppm ((3.44±1.77) %, R2=0.9997) compared with TCCON. Furthermore, the a priori H2O volume mixing ratio (VMR) profiles (MAP) used as a priori information in the TCCON retrievals (also adopted for COCCON retrievals) are evaluated with respect to radiosonde (Vaisala RS41) profiles at Sodankylä. The MAP and radiosonde profiles show similar shapes and a good linear correlation of integrated XH2O, indicating that MAP is a reasonable approximation of the true atmospheric state and an appropriate choice for the scaling retrieval methods as applied by COCCON and TCCON. COCCON shows a reduced dry bias (−14.96 %) in comparison with TCCON (−19.08 %) with respect to radiosonde XH2O. Finally, we investigate the quality of satellite data at high latitudes. For this purpose, the COCCON XH2O is compared with retrievals from the Infrared Atmospheric Sounding Interferometer (IASI) generated with the MUSICA processor (MUSICA IASI) and with retrievals from the TROPOspheric Monitoring Instrument (TROPOMI). Both paired datasets generally show good agreement and similar correlations at the two sites. COCCON measures 4.64 % less XH2O at Kiruna and 3.36 % less at Sodankylä with respect to MUSICA IASI, whereas COCCON measures 9.71 % more XH2O at Kiruna and 7.75 % more at Sodankylä compared with TROPOMI. Our study supports the assumption that COCCON also delivers a well-characterized XH2O data product. This emphasizes that this approach might complement the TCCON network with respect to satellite validation efforts. This is the first published study where COCCON XH2O has been compared with MUSICA NDACC and TCCON retrievals and has been used for MUSICA IASI and TROPOMI validation.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-12-22
    Description: That silicon is an important element in global biogeochemical cycles is widely recognised. Recently, its relevance for global crop production has gained increasing attention in light of possible deficits in plant-available Si in soil. Silicon is beneficial for plant growth and is taken up in considerable amounts by crops like rice or wheat. However, plants differ in the way they take up silicic acid from soil solution, with some species rejecting silicic acid while others actively incorporate it. Yet because the processes governing Si uptake and regulation are not fully understood, these classifications are subject to intense debate. To gain a new perspective on the processes involved, we investigated the dependence of silicon stable isotope fractionation on silicon uptake strategy, transpiration, water use, and Si transfer efficiency. Crop plants with rejective (tomato, Solanum lycopersicum, and mustard, Sinapis alba) and active (spring wheat, Triticum aestivum) Si uptake were hydroponically grown for 6 weeks. Using inductively coupled plasma mass spectrometry, the silicon concentration and isotopic composition of the nutrient solution, the roots, and the shoots were determined. We found that measured Si uptake does not correlate with the amount of transpired water and is thus distinct from Si incorporation expected for unspecific passive uptake. We interpret this lack of correlation to indicate a highly selective Si uptake mechanism. All three species preferentially incorporated light 28Si, with a fractionation factor 1000×ln (α) of −0.33 ‰ (tomato), −0.55 ‰ (mustard), and −0.43 ‰ (wheat) between growth medium and bulk plant. Thus, even though the rates of active and passive Si root uptake differ, the physico-chemical processes governing Si uptake and stable isotope fractionation do not. We suggest that isotope fractionation during root uptake is governed by a diffusion process. In contrast, the transport of silicic acid from the roots to the shoots depends on the amount of silicon previously precipitated in the roots and the presence of active transporters in the root endodermis, facilitating Si transport into the shoots. Plants with significant biogenic silica precipitation in roots (mustard and wheat) preferentially transport silicon depleted in 28Si into their shoots. If biogenic silica is not precipitated in the roots, Si transport is dominated by a diffusion process, and hence light silicon 28Si is preferentially transported into the tomato shoots. This stable Si isotope fingerprinting of the processes that transfer biogenic silica between the roots and shoots has the potential to track Si availability and recycling in soils and to provide a monitor for efficient use of plant-available Si in agricultural production.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-08-11
    Description: Purpose Spatial and temporal patterns of past erosional events are a useful and needed information to explain observed soil patterns in different landscapes. Soil thickness reflects the overall expression of pedogenesis and erosion. Forested soils of Northern Germany exhibit varying soil thicknesses with thin soils on crest positions and buried soils at the footslope. The aim of this study is to reconstruct the complex soil mass redistribution and soil patterns of this forested area due to different periods of erosion and stability. Methods We explored the explanatory power of both 10Be (in situ and meteoric) on a hillslope and we 14C-dated buried horizons at different depths. Results The 10Be depth profiles did not show an exponential decrease with depth. They had a ‘bulge’ shape indicating clay translocation and interaction with oxyhydroxydes (meteoric 10Be), bioturbation and soil mass redistribution (in situ 10Be). The combined application of both 10Be and 14C dating revealed progressive and regressive phases of soil evolution. Although Melzower Forest is protected (same vegetation) since the past 250 years, both 10Be clearly indicated major soil mass redistribution along the investigated catena. Conclusion A strong erosion impulse must have occurred between 4.5 and 6.8 kyr BP indicating an earlier human impact on soil erosion than previously postulated (~ 3 kyr earlier). Our findings correlate in fact with the first settlements reported for this region (~ 6.8 kyr BP) and show their immediate effect on soils. The overall soil redistribution rates in this forest are surprisingly similar to those obtained from a nearby agricultural area.
    Print ISSN: 1439-0108
    Electronic ISSN: 1614-7480
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-09-22
    Description: Various studies have been performed to quantify silicon (Si) stocks in plant biomass and related Si fluxes in terrestrial biogeosystems. Most studies are deliberately designed on the plot scale to ensure low heterogeneity in soils and plant composition, hence similar environmental conditions. Due to the immanent spatial soil variability, the transferability of results to larger areas, such as catchments, is therefore limited. However, the emergence of new technical features and increasing knowledge on details in Si cycling lead to a more complex picture at landscape and catchment scales. Dynamic and static soil properties change along the soil continuum and might influence not only the species composition of natural vegetation but also its biomass distribution and related Si stocks. Maximum likelihood (ML) classification was applied to multispectral imagery captured by an unmanned aerial system (UAS) aiming at the identification of land cover classes (LCCs). Subsequently, the normalized difference vegetation index (NDVI) and ground-based measurements of biomass were used to quantify aboveground Si stocks in two Si-accumulating plants (Calamagrostis epigejos and Phragmites australis) in a heterogeneous catchment and related corresponding spatial patterns of these stocks to soil properties. We found aboveground Si stocks of C. epigejos and P. australis to be surprisingly high (maxima of Si stocks reach values up to 98 g Si m−2), i.e. comparable to or markedly exceeding reported values for the Si storage in aboveground vegetation of various terrestrial ecosystems. We further found spatial patterns of plant aboveground Si stocks to reflect spatial heterogeneities in soil properties. From our results, we concluded that (i) aboveground biomass of plants seems to be the main factor of corresponding phytogenic Si stock quantities, and (ii) a detection of biomass heterogeneities via UAS-based remote sensing represents a promising tool for the quantification of lifelike phytogenic Si pools at landscape scales.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-08-03
    Description: Humans have substantially altered soil and landscape patterns and properties due to agricultural use, with severe impacts on biodiversity, carbon sequestration and food security. These impacts are difficult to quantify, because we lack data on long-term changes in soils in natural and agricultural settings and available simulation methods are not suitable for reliably predicting future development of soils under projected changes in climate and land management. To help overcome these challenges, we developed the HydroLorica soil–landscape evolution model that simulates soil development by explicitly modeling the spatial water balance as a driver of soil- and landscape-forming processes. We simulated 14 500 years of soil formation under natural conditions for three scenarios of different rainfall inputs. For each scenario we added a 500-year period of intensive agricultural land use, where we introduced tillage erosion and changed vegetation type. Our results show substantial differences between natural soil patterns under different rainfall input. With higher rainfall, soil patterns become more heterogeneous due to increased tree throw and water erosion. Agricultural patterns differ substantially from the natural patterns, with higher variation of soil properties over larger distances and larger correlations with terrain position. In the natural system, rainfall is the dominant factor influencing soil variation, while for agricultural soil patterns landform explains most of the variation simulated. The cultivation of soils thus changed the dominant factors and processes influencing soil formation and thereby also increased predictability of soil patterns. Our study highlights the potential of soil–landscape evolution modeling for simulating past and future developments of soil and landscape patterns. Our results confirm that humans have become the dominant soil-forming factor in agricultural landscapes.
    Print ISSN: 2199-3971
    Electronic ISSN: 2199-398X
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...