ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (70)
  • Oxford University Press  (42)
  • Copernicus  (28)
  • American Institute of Physics (AIP)
  • 2020-2022  (70)
Collection
  • Articles  (70)
Year
Journal
  • 1
    Publication Date: 2020-10-12
    Description: Eastern boundary upwelling systems (EBUS) are among the most productive marine ecosystems on Earth. The production of organic material is fueled by upwelling of nutrient-rich deep waters and high incident light at the sea surface. However, biotic and abiotic factors can modify surface production and related biogeochemical processes. Determining these factors is important because EBUS are considered hotspots of climate change, and reliable predictions of their future functioning requires understanding of the mechanisms driving the biogeochemical cycles therein. In this field experiment, we used in situ mesocosms as tools to improve our mechanistic understanding of processes controlling organic matter cycling in the coastal Peruvian upwelling system. Eight mesocosms, each with a volume of ∼55 m3, were deployed for 50 d ∼6 km off Callao (12∘ S) during austral summer 2017, coinciding with a coastal El Niño phase. After mesocosm deployment, we collected subsurface waters at two different locations in the regional oxygen minimum zone (OMZ) and injected these into four mesocosms (mixing ratio ≈1.5 : 1 mesocosm: OMZ water). The focus of this paper is on temporal developments of organic matter production, export, and stoichiometry in the individual mesocosms. The mesocosm phytoplankton communities were initially dominated by diatoms but shifted towards a pronounced dominance of the mixotrophic dinoflagellate (Akashiwo sanguinea) when inorganic nitrogen was exhausted in surface layers. The community shift coincided with a short-term increase in production during the A. sanguinea bloom, which left a pronounced imprint on organic matter C : N : P stoichiometry. However, C, N, and P export fluxes did not increase because A. sanguinea persisted in the water column and did not sink out during the experiment. Accordingly, export fluxes during the study were decoupled from surface production and sustained by the remaining plankton community. Overall, biogeochemical pools and fluxes were surprisingly constant for most of the experiment. We explain this constancy by light limitation through self-shading by phytoplankton and by inorganic nitrogen limitation which constrained phytoplankton growth. Thus, gain and loss processes remained balanced and there were few opportunities for blooms, which represents an event where the system becomes unbalanced. Overall, our mesocosm study revealed some key links between ecological and biogeochemical processes for one of the most economically important regions in the oceans.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-07-15
    Description: More than 300 non-dispersive infrared (NDIR) CO2 low-cost sensors labelled as LP8 were integrated into sensor units and evaluated for the purpose of long-term operation in the Carbosense CO2 sensor network in Switzerland. Prior to deployment, all sensors were calibrated in a pressure and climate chamber and in ambient conditions co-located with a reference instrument. To investigate their long-term performance and to test different data processing strategies, 18 sensors were deployed at five locations equipped with a reference instrument after calibration. Their accuracy during 19 to 25 months deployment was between 8 and 12 ppm. This level of accuracy requires careful sensor calibration prior to deployment, continuous monitoring of the sensors, efficient data filtering, and a procedure to correct drifts and jumps in the sensor signal during operation. High relative humidity (〉 ∼85 %) impairs the LP8 measurements, and corresponding data filtering results in a significant loss during humid conditions. The LP8 sensors are not suitable for the detection of small regional gradients and long-term trends. However, with careful data processing, the sensors are able to resolve CO2 changes and differences with a magnitude larger than about 30 ppm. Thereby, the sensor can resolve the site-specific CO2 signal at most locations in Switzerland. A low-power network (LPN) using LoRaWAN allowed for reliable data transmission with low energy consumption and proved to be a key element of the Carbosense low-cost sensor network.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-05-05
    Description: Snow densification stores water in alpine regions and transforms snow into ice on the surface of glaciers. Despite its importance in determining snow-water equivalent and glacier-induced sea level rise, we still lack a complete understanding of the physical mechanisms underlying snow compaction. In essence, compaction is a rheological process, where the rheology evolves with depth due to variation in temperature, pressure, humidity, and meltwater. The rheology of snow compaction can be determined in a few ways, for example, through empirical investigations (e.g., Herron and Langway, 1980), by microstructural considerations (e.g., Alley, 1987), or by measuring the rheology directly, which is the approach we take here. Using a French-press or cafetière-à-piston compression stage, Wang and Baker (2013) compressed numerous snow samples of different densities. Here we derive a mixture theory for compaction and airflow through the porous snow to compare against these experimental data. We find that a plastic compaction law explains experimental results. Taking standard forms for the permeability and effective pressure as functions of the porosity, we show that this compaction mode persists for a range of densities and overburden loads. These findings suggest that measuring compaction in the lab is a promising direction for determining the rheology of snow through its many stages of densification.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-05-11
    Description: We trained two Random Forest (RF) machine learning models for cloud mask and cloud thermodynamic-phase detection using spectral observations from Visible Infrared Imaging Radiometer Suite (VIIRS) on board Suomi National Polar-orbiting Partnership (SNPP). Observations from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) were carefully selected to provide reference labels. The two RF models were trained for all-day and daytime-only conditions using a 4-year collocated VIIRS and CALIOP dataset from 2013 to 2016. Due to the orbit difference, the collocated CALIOP and SNPP VIIRS training samples cover a broad-viewing zenith angle range, which is a great benefit to overall model performance. The all-day model uses three VIIRS infrared (IR) bands (8.6, 11, and 12 µm), and the daytime model uses five Near-IR (NIR) and Shortwave-IR (SWIR) bands (0.86, 1.24, 1.38, 1.64, and 2.25 µm) together with the three IR bands to detect clear, liquid water, and ice cloud pixels. Up to seven surface types, i.e., ocean water, forest, cropland, grassland, snow and ice, barren desert, and shrubland, were considered separately to enhance performance for both models. Detection of cloudy pixels and thermodynamic phase with the two RF models was compared against collocated CALIOP products from 2017. It is shown that, when using a conservative screening process that excludes the most challenging cloudy pixels for passive remote sensing, the two RF models have high accuracy rates in comparison to the CALIOP reference for both cloud detection and thermodynamic phase. Other existing SNPP VIIRS and Aqua MODIS cloud mask and phase products are also evaluated, with results showing that the two RF models and the MODIS MYD06 optical property phase product are the top three algorithms with respect to lidar observations during the daytime. During the nighttime, the RF all-day model works best for both cloud detection and phase, particularly for pixels over snow and ice surfaces. The present RF models can be extended to other similar passive instruments if training samples can be collected from CALIOP or other lidars. However, the quality of reference labels and potential sampling issues that may impact model performance would need further attention.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-05-13
    Description: Clouds and aerosols contribute the largest uncertainty to current estimates and interpretations of the Earth’s changing energy budget. Here we use a new-generation large-domain large-eddy model, ICON-LEM (ICOsahedral Non-hydrostatic Large Eddy Model), to simulate the response of clouds to realistic anthropogenic perturbations in aerosols serving as cloud condensation nuclei (CCN). The novelty compared to previous studies is that (i) the LEM is run in weather prediction mode and with fully interactive land surface over a large domain and (ii) a large range of data from various sources are used for the detection and attribution. The aerosol perturbation was chosen as peak-aerosol conditions over Europe in 1985, with more than fivefold more sulfate than in 2013. Observational data from various satellite and ground-based remote sensing instruments are used, aiming at the detection and attribution of this response. The simulation was run for a selected day (2 May 2013) in which a large variety of cloud regimes was present over the selected domain of central Europe. It is first demonstrated that the aerosol fields used in the model are consistent with corresponding satellite aerosol optical depth retrievals for both 1985 (perturbed) and 2013 (reference) conditions. In comparison to retrievals from ground-based lidar for 2013, CCN profiles for the reference conditions were consistent with the observations, while the ones for the 1985 conditions were not. Similarly, the detection and attribution process was successful for droplet number concentrations: the ones simulated for the 2013 conditions were consistent with satellite as well as new ground-based lidar retrievals, while the ones for the 1985 conditions were outside the observational range. For other cloud quantities, including cloud fraction, liquid water path, cloud base altitude and cloud lifetime, the aerosol response was small compared to their natural variability. Also, large uncertainties in satellite and ground-based observations make the detection and attribution difficult for these quantities. An exception to this is the fact that at a large liquid water path value (LWP 〉 200 g m−2), the control simulation matches the observations, while the perturbed one shows an LWP which is too large. The model simulations allowed for quantifying the radiative forcing due to aerosol–cloud interactions, as well as the adjustments to this forcing. The latter were small compared to the variability and showed overall a small positive radiative effect. The overall effective radiative forcing (ERF) due to aerosol–cloud interactions (ERFaci) in the simulation was dominated thus by the Twomey effect and yielded for this day, region and aerosol perturbation −2.6 W m−2. Using general circulation models to scale this to a global-mean present-day vs. pre-industrial ERFaci yields a global ERFaci of −0.8 W m−2.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-04-11
    Description: Core-refracted phases such as SKS and SKKS are commonly used to probe seismic anisotropy in the upper and lowermost portions of the Earth’s mantle. Measurements of SK(K)S splitting are often interpreted in the context of ray theory, and their frequency dependent sensitivity to anisotropy remains imperfectly understood, particularly for anisotropy in the lowermost mantle. The goal of this work is to obtain constraints on the frequency dependent sensitivity of SK(K)S phases to mantle anisotropy, particularly at the base of the mantle, through global wavefield simulations. We present results from a new numerical approach to modelling the effects of seismic anisotropy of arbitrary geometry on seismic wave propagation in global 3-D earth models using the spectral element solver AxiSEM3D. While previous versions of AxiSEM3D were capable of handling radially anisotropic input models, here we take advantage of the ability of the solver to handle the full fourth-order elasticity tensor, with 21 independent coefficients. We take advantage of the computational efficiency of the method to compute wavefields at the relatively short periods (5 s) that are needed to simulate SK(K)S phases. We benchmark the code for simple, single-layer anisotropic models by measuring the splitting (via both the splitting intensity and the traditional splitting parameters ϕ and δt) of synthetic waveforms and comparing them to well-understood analytical solutions. We then carry out a series of numerical experiments for laterally homogeneous upper mantle anisotropic models with different symmetry classes, and compare the splitting of synthetic waveforms to predictions from ray theory. We next investigate the full wave sensitivity of SK(K)S phases to lowermost mantle anisotropy, using elasticity models based on crystallographic preferred orientation of bridgmanite and post-perovskite. We find that SK(K)S phases have significant sensitivity to anisotropy at the base of the mantle, and while ray theoretical approximations capture the first-order aspects of the splitting behaviour, full wavefield simulations will allow for more accurate modelling of SK(K)S splitting data, particularly in the presence of lateral heterogeneity. Lastly, we present a cross-verification test of AxiSEM3D against the SPECFEM3D_GLOBE spectral element solver for global seismic waves in an anisotropic earth model that includes both radial and azimuthal anisotropy. A nearly perfect agreement is achieved, with a significantly lower computational cost for AxiSEM3D. Our results highlight the capability of AxiSEM3D to handle arbitrary anisotropy geometries and its potential for future studies aimed at unraveling the details of anisotropy at the base of the mantle.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-07-02
    Description: Writing a 200-word abstract about the life of a 76-year-old scientist, in which luck played a significant role, is not an easy task. Even knowing this scientist well (for I am talking about myself) does not make it any easier. When you notice something is not right, do not fear changing your major (I changed twice before settling on Fisheries and Marine Science). For my PhD in neurobiology, I changed again. Grab opportunities when they arise. Join field trips and expeditions, attend conferences, and spread your interests widely. Spend time in different countries, learn new techniques and languages, and always stay curious. Remain humble. I carried out speleological research in Jamaica and France, participated in a 4-month South Atlantic Fisheries Research Trip and a 3-month Bioluminescence Expedition to the Moluccas, and pioneered comparative physiological and functional anatomical research in Antarctica and the Arctic. Be adventurous. My ethnobiological field work took me to Papua Niugini, NE-India, and Central Australia. Having lived in Australia, Finland, France, Germany, Jamaica, Japan, and New Zealand (I am a New Zealander currently living in Korea) and having spent sabbaticals in Brazil, India, New Caledonia, and North Korea, I consider myself a global scientist. You can become one too.
    Print ISSN: 1054-3139
    Electronic ISSN: 1095-9289
    Topics: Biology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-05-22
    Description: SUMMARY We present a new approach to simulate high-frequency seismic wave propagation in and under the oceans. Based upon AxiSEM3D, this method supports a fluid ocean layer, with associated water-depth phases and seafloor topography (bathymetry). The computational efficiency and flexibility of this formulation means that high-frequency calculations may be carried out with relatively light computational loads. A validation of the fluid ocean implementation is shown, as is an evaluation of the oft-used ocean loading formulation, which we find breaks down at longer periods than was previously believed. An initial consideration of the effects of seafloor bathymetry on seismic wave propagation is also given, wherein we find that the surface waveforms are significantly modified in both amplitude and duration. When compared to observed data from isolated island stations in the Pacific, synthetics which include a global ocean and seafloor topography appear to more closely match the observed waveform features than synthetics generated from a model with topography on the solid surface alone. We envisage that such a method will be of use in understanding the new and exciting ocean-bottom and floating seismometer data sets now being regularly collected.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-08-28
    Description: We introduce the open-source tool noisi for the forward and inverse modeling of ambient seismic cross-correlations with spatially varying source spectra. It utilizes pre-computed databases of Green's functions to represent seismic wave propagation between ambient seismic sources and seismic receivers, which can be obtained from existing repositories or imported from the output of wave propagation solvers. The tool was built with the aim of studying ambient seismic sources while accounting for realistic wave propagation effects. Furthermore, it may be used to guide the interpretation of ambient seismic auto- and cross-correlations, which have become preeminent seismological observables, in light of nonuniform ambient seismic sources. Written in the Python language, it is accessible for both usage and further development and efficient enough to conduct ambient seismic source inversions for realistic scenarios. Here, we introduce the concept and implementation of the tool, compare its model output to cross-correlations computed with SPECFEM3D_globe, and demonstrate its capabilities on selected use cases: a comparison of observed cross-correlations of the Earth's hum to a forward model based on hum sources from oceanographic models and a synthetic noise source inversion using full waveforms and signal energy asymmetry.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-07-08
    Description: SUMMARY Small-scale heterogeneities in the Earth’s mantle, the origin of which is likely compositional anomalies, can provide critical clues on the evolution of mantle convection. Seismological investigation of such small-scale heterogeneities can be facilitated by forward modelling of elastic wave scattering at high frequencies, but doing so with conventional 3-D numerical methods has been computationally prohibitive. We develop an efficient approach for computing high-frequency synthetic wavefields originating from small-scale mantle heterogeneities. Our approach delivers the exact elastodynamic wavefield and does not restrict the geometry or physical properties of the local heterogeneity and the background medium. It combines the technique of wavefield injection and a numerical method called AxiSEM3D. Wavefield injection can decompose the total wavefield into an incident and a scattered part. Both these two parts naturally have low azimuthal complexity and can thus be solved efficiently using AxiSEM3D under two different coordinate systems. With modern high-performance computing (on an order of magnitude of 105 CPU-hr), we have achieved a 1 Hz dominant frequency for global-scale problems with strong deep Earth scattering. Compared with previous global injection approaches, ours allows for a 3-D background medium and yields the exact solution without ignoring any higher-order scattering by the background medium. Technically, we develop a traction-free scheme for realizing wavefield injection in a spectral element method, which brings in several flexibilities and simplifies the implementation by avoiding stress or traction computation on the injection boundary. For a spherical heterogeneity in the mid-lower mantle, we compare the 3-D full-wave solution with two approximate ones obtained, respectively, by the perturbation theory and in-plane (axisymmetric) modelling. As a comprehensive application, we study S-wave scattering by a 3-D ultra-low velocity zone, incorporating 3-D crustal structures on the receiver side as part of the background model.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...