ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • American Institute of Physics  (432)
  • Oxford University Press  (253)
  • American Chemical Society (ACS)
  • BioMed Central
  • Frontiers Media
  • Nature Publishing Group (NPG)
  • Seismological Society of America (SSA)
Sammlung
Verlag/Herausgeber
  • 1
    Publikationsdatum: 2015-07-07
    Beschreibung: Journal of Proteome Research DOI: 10.1021/acs.jproteome.5b00307
    Print ISSN: 1535-3893
    Digitale ISSN: 1535-3907
    Thema: Chemie und Pharmazie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 1988-01-01
    Print ISSN: 1367-4803
    Digitale ISSN: 1460-2059
    Thema: Biologie , Informatik , Medizin
    Publiziert von Oxford University Press
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-05-25
    Beschreibung: © 2008 Author et al. This is an open access article distributed under the terms of the Creative Commons Attribution License The definitive version was published in Environmental Health 7 (2008): S6, doi:10.1186/1476-069X-7-S2-S6.
    Beschreibung: We review the major linkages between the oceans and public health, focusing on exposures and potential health effects due to anthropogenic and natural factors including: harmful algal blooms, microbes, and chemical pollutants in the oceans; consumption of seafood; and flooding events. We summarize briefly the current state of knowledge about public health effects and their economic consequences; and we discuss priorities for future research. We find that: • There are numerous connections between the oceans, human activities, and human health that result in both positive and negative exposures and health effects (risks and benefits); and the study of these connections comprises a new interdisciplinary area, "oceans and human health." • The state of present knowledge about the linkages between oceans and public health varies. Some risks, such as the acute health effects caused by toxins associated with shellfish poisoning and red tide, are relatively well understood. Other risks, such as those posed by chronic exposure to many anthropogenic chemicals, pathogens, and naturally occurring toxins in coastal waters, are less well quantified. Even where there is a good understanding of the mechanism for health effects, good epidemiological data are often lacking. Solid data on economic and social consequences of these linkages are also lacking in most cases. • The design of management measures to address these risks must take into account the complexities of human response to warnings and other guidance, and the economic tradeoffs among different risks and benefits. Future research in oceans and human health to address public health risks associated with marine pathogens and toxins, and with marine dimensions of global change, should include epidemiological, behavioral, and economic components to ensure that resulting management measures incorporate effective economic and risk/benefit tradeoffs.
    Beschreibung: Funding was provided in part by the NSF-NIEHS Oceans Centers at Woods Hole, University of Hawaii, University of Miami, and University of Washington, and the NOAA Oceans and Human Health Initiative Centers of Excellent in Charleston, Seattle and Milwaukee, the National Center for Environmental Health (NCEH) of the Centers for Disease Control and Prevention (CDC), and the WHOI Marine Policy Center. Grant numbers are: NIEHS P50 ES012742 and NSF OCE-043072 (HLKP, RJG, PH); NSF OCE 0432368 and NIEHS P50 ES12736 (LEF); NIEHS P50 ES012762 and NSF OCE-0434087 (EMF, AT, LRY); NSF OCE04-32479 and NIEHS P50 ES012740 (BAW)
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2022-10-26
    Beschreibung: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hein, C. J., Fallon, A. R., Rosen, P., Hoagland, P., Georgiou, I. Y., FitzGerald, D. M., Morris, M., Baker, S., Marino, G. B., & Fitzsimons, G. Shoreline dynamics along a developed river mouth barrier island: Multi-decadal cycles of erosion and event-driven mitigation. Frontiers in Earth Science, 7(103), (2019), doi:10.3389/feart.2019.00103.
    Beschreibung: Human modifications in response to erosion have altered the natural transport of sediment to and across the coastal zone, thereby potentially exacerbating the impacts of future erosive events. Using a combination of historical shoreline-change mapping, sediment sampling, three-dimensional beach surveys, and hydrodynamic modeling of nearshore and inlet processes, this study explored the feedbacks between periodic coastal erosion patterns and associated mitigation responses, focusing on the open-ocean and inner-inlet beaches of Plum Island and the Merrimack River Inlet, Massachusetts, United States. Installation of river-mouth jetties in the early 20th century stabilized the inlet, allowing residential development in northern Plum Island, but triggering successive, multi-decadal cycles of alternating beach erosion and accretion along the inner-inlet and oceanfront beaches. At a finer spatial scale, the formation and southerly migration of an erosion “hotspot” (a setback of the high-water line by ∼100 m) occurs regularly (every 25–40 years) in response to the refraction of northeast storm waves around the ebb-tidal delta. Growth of the delta progressively shifts the focus of storm wave energy further down-shore, replenishing updrift segments with sand through the detachment, landward migration, and shoreline-welding of swash bars. Monitoring recent hotspot migration (2008–2014) demonstrates erosion (〉30,000 m3 of sand) along a 350-m section of beach in 6 months, followed by recovery, as the hotspot migrated further south. In response to these erosion cycles, local residents and governmental agencies attempted to protect shorefront properties with a variety of soft and hard structures. The latter have provided protection to some homes, but enhanced erosion elsewhere. Although the local community is in broad agreement about the need to plan for long-term coastal changes associated with sea-level rise and increased storminess, real-time responses have involved reactions mainly to short-term (〈5 years) erosion threats. A collective consensus for sustainable management of this area is lacking and the development of a longer-term adaptive perspective needed for proper planning has been elusive. With a deepening understanding of multi-decadal coastal dynamics, including a characterization of the relative contributions of both nature and humans, we can be more optimistic that adaptations beyond mere reactions to shoreline change are achievable.
    Beschreibung: This work was supported financially by the National Science Foundation (NSF) Coastal SEES program (awards OCE 1325430 and OCE 1325366). PH also received partial support through the NSF Coupled Natural-Human Systems program (award AGS 1518503) and the Northeast Regional Sea Grant and Woods Hole Sea Grant Programs (NOAA Cooperative Agreement award NA14OAR4170074).
    Schlagwort(e): Tidal-inlet dynamics ; Beach erosion ; Coastal adaptation ; Developed beach ; Shoreline change
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2022-10-26
    Beschreibung: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Johri, S., Carnevale, M., Porter, L., Zivian, A., Kourantidou, M., Meyer, E. L., Seevers, J., & Skubel, R. A. Pathways to justice, equity, diversity, and inclusion in marine science and conservation. Frontiers in Marine Science, 8, (2021): 696180, https://doi.org/10.3389/fmars.2021.696180.
    Beschreibung: Marine conservation sciences have traditionally been, and remain, non-diverse work environments with many barriers to justice, equity, diversity, and inclusion (JEDI). These barriers disproportionately affect entry of early career scientists and practitioners and limit the success of marine conservation professionals from under-represented, marginalized, and overburdened groups. These groups specifically include women, LGBTQ+, Black, Indigenous, and people of color (BIPOC). However, the issues also arise from the global North/South and East/West divide with under-representation of scientists from the South and East in the global marine conservation and science arena. Persisting inequities in conservation, along with a lack of inclusiveness and diversity, also limit opportunities for innovation, cross-cultural knowledge exchange, and effective implementation of conservation and management policies. As part of its mandate to increase diversity and promote inclusion of underrepresented groups, the Diversity and Inclusion committee of the Society for Conservation Biology-Marine Section (SCB Marine) organized a JEDI focus group at the Sixth International Marine Conservation Congress (IMCC6) which was held virtually. The focus group included a portion of the global cohort of IMCC6 attendees who identified issues affecting JEDI in marine conservation and explored pathways to address those issues. Therefore, the barriers and pathways identified here focus on issues pertinent to participants’ global regions and experiences. Several barriers to just, equitable, diverse, and inclusive conservation science and practice were identified. Examples included limited participation of under-represented minorities (URM) in research networks, editorial biases against URM, limited professional development and engagement opportunities for URM and non-English speakers, barriers to inclusion of women, LGBTQ+, and sensory impaired individuals, and financial barriers to inclusion of URM in all aspects of marine conservation and research. In the current policy brief, we explore these barriers, assess how they limit progress in marine conservation research and practice, and seek to identify initiatives for improvements. We expect the initiatives discussed here to advances practices rooted in principles of JEDI, within SCB Marine and, the broader conservation community. The recommendations and perspectives herein broadly apply to conservation science and practice, and are critical to effective and sustainable conservation and management outcomes.
    Beschreibung: The Society for Conservation – Marine Section provided partial funding to support publication costs of this manuscript.
    Schlagwort(e): Equity ; Diversity ; Inclusion ; Conferences ; Peer-review ; Bias ; Marine ; Conservation
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2022-10-26
    Beschreibung: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hoagland, P., Kirkpatrick, B., Jin, D., Kirkpatrick, G., Fleming, L. E., Ullmann, S. G., Beet, A., Hitchcock, G., Harrison, K. K., Li, Z. C., Garrison, B., Diaz, R. E., & Lovko, V. Lessening the hazards of Florida red tides: a common sense approach. Frontiers in Marine Science, 7, (2020): 538, doi:10.3389/fmars.2020.00538.
    Beschreibung: In the Gulf of Mexico, especially along the southwest Florida coast, blooms of the dinoflagellate Karenia brevis are a coastal natural hazard. The organism produces a potent class of toxins, known as brevetoxins, which are released following cell lysis into ocean or estuarine waters or, upon aerosolization, into the atmosphere. When exposed to sufficient levels of brevetoxins, humans may suffer from respiratory, gastrointestinal, or neurological illnesses. The hazard has been exacerbated by the geometric growth of human populations, including both residents and tourists, along Florida’s southwest coast. Impacts to marine organisms or ecosystems also may occur, such as fish kills or deaths of protected mammals, turtles, or birds. Since the occurrence of a severe Karenia brevis bloom off the southwest Florida coast three-quarters of a century ago, there has been an ongoing debate about the best way for humans to mitigate the impacts of this hazard. Because of the importance of tourism to coastal Florida, there are incentives for businesses and governments alike to obfuscate descriptions of these blooms, leading to the social amplification of risk. We argue that policies to improve the public’s ability to understand the physical attributes of blooms, specifically risk communication policies, are to be preferred over physical, chemical, or biological controls. In particular, we argue that responses to this type of hazard must emphasize maintaining the continuity of programs of scientific research, environmental monitoring, public education, and notification. We propose a common-sense approach to risk communication, comprising a simplification of the public provision of existing sources of information to be made available on a mobile website.
    Beschreibung: The research leading to these results was supported by the US National Science Foundation (NSF) under NSF Grant No. CNH 1009106. PH and DJ acknowledge the complementary support under NSF Grant No. PFI/BIC 1534054.
    Schlagwort(e): Harmful algal bloom ; Florida red tide ; Karenia brevis ; Economic effect ; Policy response ; Social amplification of risk ; Risk communication
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2022-10-26
    Beschreibung: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sandifer, P., Knapp, L., Lichtveld, M., Manley, R., Abramson, D., Caffey, R., Cochran, D., Collier, T., Ebi, K., Engel, L., Farrington, J., Finucane, M., Hale, C., Halpern, D., Harville, E., Hart, L., Hswen, Y., Kirkpatrick, B., McEwen, B., Morris, G., Orbach, R., Palinkas, L., Partyka, M., Porter, D., Prather, A. A., Rowles, T., Scott, G., Seeman, T., Solo-Gabriele, H., Svendsen, E., Tincher, T., Trtanj, J., Walker, A. H., Yehuda, R., Yip, F., Yoskowitz, D., & Singer, B. Framework for a community health observing system for the Gulf of Mexico Region: preparing for future disasters. Frontiers in Public Health, 8, (2020): 578463, doi:10.3389/fpubh.2020.578463.
    Beschreibung: The Gulf of Mexico (GoM) region is prone to disasters, including recurrent oil spills, hurricanes, floods, industrial accidents, harmful algal blooms, and the current COVID-19 pandemic. The GoM and other regions of the U.S. lack sufficient baseline health information to identify, attribute, mitigate, and facilitate prevention of major health effects of disasters. Developing capacity to assess adverse human health consequences of future disasters requires establishment of a comprehensive, sustained community health observing system, similar to the extensive and well-established environmental observing systems. We propose a system that combines six levels of health data domains, beginning with three existing, national surveys and studies plus three new nested, longitudinal cohort studies. The latter are the unique and most important parts of the system and are focused on the coastal regions of the five GoM States. A statistically representative sample of participants is proposed for the new cohort studies, stratified to ensure proportional inclusion of urban and rural populations and with additional recruitment as necessary to enroll participants from particularly vulnerable or under-represented groups. Secondary data sources such as syndromic surveillance systems, electronic health records, national community surveys, environmental exposure databases, social media, and remote sensing will inform and augment the collection of primary data. Primary data sources will include participant-provided information via questionnaires, clinical measures of mental and physical health, acquisition of biological specimens, and wearable health monitoring devices. A suite of biomarkers may be derived from biological specimens for use in health assessments, including calculation of allostatic load, a measure of cumulative stress. The framework also addresses data management and sharing, participant retention, and system governance. The observing system is designed to continue indefinitely to ensure that essential pre-, during-, and post-disaster health data are collected and maintained. It could also provide a model/vehicle for effective health observation related to infectious disease pandemics such as COVID-19. To our knowledge, there is no comprehensive, disaster-focused health observing system such as the one proposed here currently in existence or planned elsewhere. Significant strengths of the GoM Community Health Observing System (CHOS) are its longitudinal cohorts and ability to adapt rapidly as needs arise and new technologies develop.
    Beschreibung: This project was supported in part by contract # C-231826 between the Gulf of Mexico Alliance, on behalf of the Gulf of Mexico Research Initiative, and the College of Charleston. The content of this paper is solely the responsibility of the authors and does not necessarily represent the official views of the Gulf of Mexico Alliance, the Gulf of Mexico Research Initiative, the College of Charleston, or the Centers for Disease Control and Prevention. Mention of private companies, trade names, or products does not imply endorsement of any kind.
    Schlagwort(e): Health observing system ; Disasters ; Gulf of Mexico ; Cohort studies ; Stress ; COVID-19 ; Allostatic load ; Health surveillance
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2022-10-20
    Beschreibung: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Oliveira, T. C. A., Lin, Y.-T., & Porter, M. B. Underwater sound propagation modeling in a complex shallow water environment. Frontiers in Marine Science, 8, (2021): 751327, https://doi.org/10.3389/fmars.2021.751327.
    Beschreibung: Three-dimensional (3D) effects can profoundly influence underwater sound propagation in shallow-water environments, hence, affecting the underwater soundscape. Various geological features and coastal oceanographic processes can cause horizontal reflection, refraction, and diffraction of underwater sound. In this work, the ability of a parabolic equation (PE) model to simulate sound propagation in the extremely complicated shallow water environment of Long Island Sound (United States east coast) is investigated. First, the 2D and 3D versions of the PE model are compared with state-of-the-art normal mode and beam tracing models for two idealized cases representing the local environment in the Sound: (i) a 2D 50-m flat bottom and (ii) a 3D shallow water wedge. After that, the PE model is utilized to model sound propagation in three realistic local scenarios in the Sound. Frequencies of 500 and 1500 Hz are considered in all the simulations. In general, transmission loss (TL) results provided by the PE, normal mode and beam tracing models tend to agree with each other. Differences found emerge with (1) increasing the bathymetry complexity, (2) expanding the propagation range, and (3) approaching the limits of model applicability. The TL results from 3D PE simulations indicate that sound propagating along sand bars can experience significant 3D effects. Indeed, for the complex shallow bathymetry found in some areas of Long Island Sound, it is challenging for the models to track the interference effects in the sound pattern. Results emphasize that when choosing an underwater sound propagation model for practical applications in a complex shallow-water environment, a compromise will be made between the numerical model accuracy, computational time, and validity.
    Beschreibung: TO thanks FCT/MCTES for the financial support to CESAM (UIDP/50017/2020 + UIDB/50017/2020), through national funds. The funding support from the Office of Naval Research for Y-TL via the grant N00014-21-1-2416 was also acknowledged. MP was supported by the Office of Naval Research under contracts N68335-17-C-0553 and N00014-18-C-7007.
    Schlagwort(e): Underwater soundscape ; 3D PE ; Bellhop3D ; Kraken3D ; Long Island Sound ; Sand bars
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2022-10-26
    Beschreibung: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Kourantidou, M., Hoagland, P., Dale, A., & Bailey, M. Equitable allocations in northern fisheries: bridging the divide for Labrador Inuit. Frontiers in Marine Science, 8, (2021): 590213, https://doi.org/10.3389/fmars.2021.590213.
    Beschreibung: Canada has undertaken commitments to recognize the rights of Indigenous Peoples in fisheries through policies and agreements, including Integrated Fishery Management Plans, the Reconciliation Strategy, and Land Claim Agreements (LCAs). In addition to recognizing rights, these commitments were intended to respect geographic adjacency principles, to enhance the economic viability of Indigenous communities, and to be reflective of community dependence on marine resources. We examined the determinants of quota allocations in commercial fisheries involving Nunatsiavut, Northern Labrador, the first self-governing region for the Inuit peoples in Canada. It has been argued that current fishery allocations for Nunatsiavut Inuit have not satisfied federal commitments to recognize Indigenous rights. Indicators that measure equity in commercial allocations for the turbot or Greenland halibut (Reinhardtius hippoglossoides) and northern shrimp (Pandalus borealis) fisheries were identified and assessed. In these two cases, historical allocations continue to predominate for allocations based upon equity or other social or economic considerations. We illustrate equity-enhancing changes in the quota distribution under scenarios of different levels of inequality aversion, and we make qualitative assessments of the effects of these allocations to Nunatsiavut for socioeconomic welfare. This approach could benefit fisheries governance in Northern Labrador, where federal commitments to equity objectives continue to be endorsed but have not yet been integrated fully into quota allocations.
    Beschreibung: This research was undertaken with funding from the Canada First Research Excellence Fund through the Ocean Frontier Institute (MK and MB) and the Johnson Endowment of the Woods Hole Oceanographic Institution’s (WHOI) Marine Policy Center (PH).
    Schlagwort(e): Fisheries ; Allocations ; Equity ; Indigenous rights ; Access
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2005-05-23
    Print ISSN: 0003-6951
    Digitale ISSN: 1077-3118
    Thema: Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...