ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • Campi Flegrei caldera  (1)
  • Delamination  (1)
  • Elsevier  (2)
  • Nature Publishing Group
  • 2020-2022  (2)
  • 1980-1984
  • 1970-1974
Collection
  • Articles  (2)
Publisher
  • Elsevier  (2)
  • Nature Publishing Group
Years
Year
  • 1
    Publication Date: 2021-05-12
    Description: Sr-isotopic microanalysis has been performed on selected minerals from the Campi Flegrei caldera, together with Sr and Nd isotopic ratio determinations on bulk mineral and glass fractions. The aim was a better characterization of the chemically homogeneous, but isotopically distinct magmatic components which fed volcanic eruptions of the caldera over the past 5 ka, in order to enhance our knowledge about one of the most dangerous volcanoes on Earth.Information on the involved magmatic endmembers, unobtainable by analyzing the isotopic composition of whole rock samples and bulk mineral fractions, has been acquired through high-precision determination of 87Sr/86Sr on single crystals and microdrilled mineral powders. We focused our investigations on the products emplaced during the Astroni 6 eruption (4.23 cal ka BP), assumed representative of the expected event in case of renewed volcanic activity in the Campi Flegrei caldera. Data on single crystals and microdrilled mineral powders have been compared with Sr and Nd isotopic compositions of bulk mineral fractions from productsemplaced during the whole Astroni activity, which included seven distinct eruptions. The 87Sr/86Sr ratios of single crystals and microdrilled mineral powders are in the 0.7060 to 0.7076 range, much wider than that of bulk mineral fractions, which range from 0.7066 to 0.7076. Moreover, the Sr isotopic ratios are inversely correlated to 143Nd/144Nd. The new data allow us to better define the magmatic endmembers involved in mingling/mixing processes that occurred prior to/during the Astroni activity. One magmatic endmember, characterized by average 87Sr/86Sr ratio of ~0.70750, was quite common in the past 15 ka activity of the Campi Flegrei caldera; the other, as evidenced by the isotopic composition of single feldspar and clinopyroxene crystals, is less enriched in radiogenic Sr (87Sr/86Sr ~0.70724). The latter is interpreted to represent a new magmatic component that entered the Campi Flegrei caldera feeding system in the past 5 ka, the previously recognized Astroni 6 component. However, diopside crystals in Astroni 6 are characterized by even lower 87Sr/86Sr, in the range of 0.7060–0.7068 and by the highest 143Nd/144Nd ratios measured in the products of Astroni activity. These diopsides may represent another common magmatic component, as they have been found in most of the Phlegrean Volcanic District products emplaced over the past 75 ka. These diopsides, crystallized in a mantle-derived mafic magma, were entrapped by the Astroni 6 magma during ascent, before it mingled/mixed with the more differentiated and enriched in radiogenic Sr resident magma, thus attaining an intermediate Sr-Nd isotopic fingerprint. These results have an important outcome on the understanding of the volcano behavior, as renewed activity can be triggered by the arrival of fresh magma in the feeding system that would mingle/mix with the resident magma. Such an event may be able to start an unrest phase at the volcano that could last for years or decades, perhaps culminating in a new eruption.
    Description: Published
    Description: 24-37
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: 4V. Processi pre-eruttivi
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: Magma mixing ; Microdrilling ; Sr-isotopic microanalysis ; Astroni eruptions ; Campi Flegrei caldera
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-06-10
    Description: Understanding how long-term subduction dynamics relates to the short-term seismicity and crustal tec tonics is a challenging but crucial topic in seismotectonics. We attempt to address this issue by linking long-term geodynamic evolution with short-term seismogenic deformation in the Northern Apennines. This retreating subduction orogen displays tectonic and seismogenic behaviors on various spatiotemporal scales that also characterize other subduction zones in the Mediterranean area. We use visco-elasto-plastic seismo-thermo-mechanical (STM) modeling with a realistic 2D setup based on available geological and geophysical data. The subduction dynamics and seismicity are coupled in the numerical modeling, and driven only by buoyancy forces, i.e., slab pull. Our results suggest that lower crustal rheology and lithospheric mantle temperature modulate the crustal tectonics of the Northern Apennines, as inferred by previous studies. The observed spatial distribution of upper crustal tectonic regimes and surface displacements requires buoyant, highly ductile material in the subduction channel beneath the internal part of the orogen. This allows protrusion of the asthenosphere in the lower crust and lithospheric delamination associated with slab retreat. The resulting surface velocities and principal stress axes generally agree with present-day observations, suggesting that slab delamination and retreat can explain the dynamics of the orogen. Our simulations successfully reproduce the type and overall distribution of seismicity with thrust faulting events in the external part of the orogen and normal faulting in its internal part. Slab temperatures and lithospheric mantle stiffness affect the cumulative seismic moment release and spatial distribution of upper crustal earthquakes. The properties of deep, sub-crustal material are thus shown to influence upper crustal seismicity in an orogen driven by slab retreat, even though the upper crust is largely decoupled from the lithospheric mantle. Our simulations therefore highlight the effect of deep lower crustal rheologies, self-driven subduction dynamics and mantle properties in controlling shallow deformation and seismicity.
    Description: Published
    Description: 228481
    Description: 1T. Struttura della Terra
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: Numerical modeling ; Geodynamics ; Seismotectonics orogen ; Delamination ; Northern Apennines ; 04.06. Seismology ; 04.03. Geodesy ; 05.01. Computational geophysics ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...