ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley-Blackwell  (12)
  • 2020-2022
  • 1995-1999  (10)
  • 1925-1929  (2)
Collection
Years
Year
  • 1
    ISSN: 0009-2940
    Keywords: Macrocyclic ligands ; Lanthanides ; Copper ; Polyamines ; Polycarboxylic acids ; Chemistry ; Inorganic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The optimized synthesis of two new macrocyclic polyamine polycarboxylic ligands, 1,4,7,10,14,17,20,23-octaazacyclohexacosane-1,4,7,10,14,17,20,23-octaacetic acid (H8OHEC) (10) and 1,4,7, 10,13,16,19,22-octaazacyclotetracosane-1,4,7,10, 13,16,19,22-octaacetic acid (H8OTEC) (12), is presented. The key step in the synthesis of both is the high yield carboxymethylation of the corresponding macrocyclic amines using tert-butyl bromoacetate followed by acidic hydrolysis of the acetate protecting groups. The molecular structures of the intermediates 1,4,7,10,14,17,20,23-octaazacyclohexacosane (OHEC-amine) (8), and octa-tert-butyl 1,4,7,10,13,16,19,22- octaazacyclotetracosane-1,4,7,10,13,16,19,22-octaacetate (OTEC-ester) (11) are determined by X-ray crystal structure analysis. OHEC-amine 8 reacts with 2 equiv. of CuSO4 yielding the dinuclear complex [Cu2(OHEC-amine)](SO4)2 (13). Complex 13 crystallizes with 16 molecules of water. 13 · 16 H2O contains two copper atoms, which are coordinated in a strongly distorted octahedral fashion by four nitrogen atoms, one oxygen atom from the sulfate dianion and one oxygen atom from a water molecule. The new ligands 10 and 12 are fully characterized by 1D- and 2D-NMR spectroscopy. Both ligands form dinuclear lanthanide(III) chelates (Ln=Y, Sm, Eu, Gd, Yb, Lu), which are stable and highly water soluble. With lanthanum(III) only mononuclear complexes are formed.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Peptide Science 3 (1997), S. 209-223 
    ISSN: 1075-2617
    Keywords: α-helices ; coiled-coil ; helix-dipole ; protein stability ; electrostatic interactions ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The effects on protein stability of negatively charged Glu side chains at different positions along the length of the α-helix were investigated in the two-stranded α-helical coiled-coil. A native coiled-coil has been designed which consists of two identical 35 residue polypeptide chains with a heptad repeat QgVaGbAcLdQeKf and a Cys residue at position 2 to allow the formation of an interchain 2-2′ disulphide bridge. This coiled-coil contains no intra- or interchain electrostatic interactions and served as a control for peptides in which Glu was substituted for Gln in the e or g heptad positions. The effect of the substitutions on stability was determined by urea denaturation at 20°C with the degree of unfolding monitored by circular dichroism spectroscopy. A Glu substituted for Gln near the N-terminus in each chain of the coiled-coil stabilizes the coiled-coil at pH 7, consistent with the charge-helix dipole interaction model. This stability increase is modulated by pH change and the addition of salt (KCl or guanidine hydrochloride), confirming the electrostatic nature of the effect. In contrast, Glu substitution in the middle of the helix destabilizes the coiled-coil because of the lower helical propensity and hydrophobicity of Glu compared with Gln at pH 7. Taking the intrinsic differences into account, the apparent charge-helix dipole interaction at the N-terminus is approximately 0.35 kcal/mol per Glu substitution. A Glu substitution at the C-terminus destabilizes the coiled-coil more than in the middle owing to the combined effects of intrinsic destabilization and unfavourable charge-helix dipole interaction with the negative pole of the helix dipole. The estimated destabilizing charge-helix dipole interaction of 0.08 kcal/mol is smaller than the stabilizing interaction at the N-terminus. The presence of a 2-2′disulphide bridge appears to have little influence on the magnitude of the charge-helix dipole interactions at either end of the coiled-coil. © 1997 European Peptide Society and John Wiley & Sons, Ltd.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 55 (1995), S. 839-839 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 29 (1995), S. 1337-1348 
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: The polymerization of desaminotyrosinetyrosylhexyl ester (DTH) with phosgene gives rise to poly(DTH carbonate), a new pseudopoly(amino acid). To evaluate the performance of this bioabsorbable material in orthopedic applications, the tissue responses elicited by compression-molded pins of poly(DTH carbonate) and clinically used polydioxanone pins (PDS; Orthosorb®) were compared. The two types of pins were implanted in the paravertebral muscle and in the metaphyseal proximal tibia and distal femur of 10 White New Zealand Rabbits for 1, 2, 4, and 26 weeks. The tissue response was evaluated using histologic staining of softand hard-tissue sections, fluorescent bone marker incorporation, and backscattered electron imaging. In soft tissue, both poly(DTH carbonate) and PDS elicited a mild inflammatory response resulting in encapsulation. During the disintegration phase, the PDS implants triggered a foreign body response involving the phagocytosis of polymeric debris by histiocytes and giant cells. No such response was observed for poly(DTH carbonate). In hard tissue, close bone apposition was observed throughout the 26-week test period for poly(DTH carbonate) implants. At the 26-week time point, the poly(DTH carbonate) implants exhibited surface erosion and were penetrated by new bone. In contrast, an intervening fibrous tissue layer was always present between the PDS pins and the bone. At 26 weeks, the PDS implants had partially resorbed and a foreign body response characterized by infiltration of inflammatory cells, and bone resorption was observed in several of the implantation sites. This study indicates that poly(DTH carbonate) and PDS exhibit fundamentally different interactions with hard tissue, and that poly(DTH carbonate) is a promising orthopedic implant material. © 1995 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 34 (1997), S. 95-104 
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: A biodegradable polyphosphate polymer (Mn = 18,000, Mw/Mn = 3.2) matrix system was developed as a potential delivery vehicle for growth factors. As a model system, release of recombinant human osteogenic protein-1 (OP-1) from this polymer was evaluated. The polyphosphate was synthesized using a triethylamine catalyst in an argon environment, and characterized using elemental analysis, gel permeation chromatography (GPC), and Fourier transform infrared spectroscopy (FTIR). Degradation kinetics of the polyphosphate polymer in phosphate-buffered saline (PBS) were represented by a second-order polynomial while degradation in bovine serum was linear with time. The polymer degraded faster in PBS than in bovine serum. In vitro release of OP-1 was also faster in PBS than in serum. Release kinetics of OP-1 in PBS and serum were represented by second-order polynomials. The OP-1 release from this physically dispersed polymeric matrix may be described by several possible mechanisms: diffusion, bulk polymer degradation, ion complexation, and interactions among the protein (OP-1), polymer, proteins, and enzymes in the media. This polyphosphate may be an effective carrier for morphogens, growth factors, or other classes of bioactive molecules. © 1997 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 41 (1998), S. 443-454 
    ISSN: 0021-9304
    Keywords: poly(lactic acid) ; subcutaneous implantation ; tyrosine-derived polymers ; poly(DTE carbonate) ; poly(DTE adipate) ; biocompatibility ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Previous studies demonstrated that poly(DTE carbonate) and poly (DTE adipate), two tyrosine-derived polymers, have suitable properties for use in biomedical applications. This study reports the evaluation of the in vivo tissue response to these polymers in comparison to poly(L-lactic acid) (PLLA). Typically, the biocompatibility of a material is determined through histological evaluations as a function of implantation time in a suitable animal model. However, due to changes that can occur in the tissue response at different stages of the degradation process, a fixed set of time points is not ideal for comparative evaluations of materials having different rates of degradation. Therefore the tissue response elicited by poly(DTE carbonate), poly(DTE adipate), and PLLA was evaluated as a function of molecular weight. This allowed the tissue response to be compared at corresponding stages of degradation. Poly(DTE adipate) consistently elicited the mildest tissue response, as judged by the width and lack of cellularity of the fibrous capsule formed around the implant. The tissue response to poly(DTE carbonate) was mild throughout the 570 day study. However, the response to PLLA fluctuated as a function of the degree of degradation, exhibiting an increase in the intensity of inflammation as the implant began to lose mass. At the completion of the study, tissue ingrowth into the degrading and disintegrating poly(DTE adipate) implant was evident while no comparative ingrowth of tissue was seen for PLLA. The similarity of the in vivo and in vitro degradation rates of each polymer confirmed the absence of enzymatic involvement in the degradation process. A comparison of molecular weight retention, water uptake, and mass loss in vivo with two commonly used in vitro systems [phosphate-buffered saline (PBS) and simulated body fluid (SBF)] demonstrated that for the two tyrosine-derived polymers the in vivo results were equally well simulated in vitro with PBS and SBF. However, for PLLA the in vivo results were better simulated in vitro using PBS. © 1998 John Wiley & Sons, Inc. J Biomed Mater Res, 41, 443-454, 1998.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 42 (1998), S. 66-75 
    ISSN: 0021-9304
    Keywords: combinatorial design ; fibroblast proliferation ; tyrosine, pseudo-poly(amino acid) ; degradable polymer ; cell-polymer interactions ; polyarylate ; tissue engineering ; biomaterial ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: A combinatorial library of degradable polyarylates was prepared. These polymers are A-B-type copolymers consisting of an alternating sequence of a diphenol and a diacid. The library was prepared by copolymerizing, in all possible combinations, 14 different tyrosine-derived diphenols and eight different aliphatic diacids, resulting in 8 × 14 = 112 distinct polymers. This approach (a) increases the number of available polymeric candidate materials for medical applications, and (b) facilitates the identification of correlations between polymer structure and glass transition temperature, air-water contact angle, mechanical properties, and fibroblast proliferation. The pendent chain and backbone structures were systematically varied by (a) simple homologative variations in the number of methylene groups, (b) substitution of oxygen for methylene groups, and (c) introduction of branched and aromatic structures. The polymers contained within the library exhibited incremental variations in Tg (from 2°C to 91°C) and air-water contact angle (from 64° to 101°). Fibroblast proliferation (in vitro, serum-containing media) ranged from approximating that measured on tissue culture polystyrene to complete absence of proliferation. Generally, decreased proliferation correlated linearly with increased surface hydrophobicity, except in those polymers derived from oxygen-containing diacids in their backbone which were uniformly good growth substrates even if their surfaces were very hydrophobic. In a selected subgroup of polymers, tensile strength of thin solvent cast films ranged from about 6 to 45 MPa, while Young's modulus (stiffness) ranged from about 0.3 to 1.7 GPa. Combinatorial biomaterial libraries such as these tyrosine-derived polyarylates permit the systematic study of material-dependent biological responses and provide the medical device designer with the option to choose a suitable material from a library of related polymers that encompasses a broad range of properties. © 1998 John Wiley & Sons, Inc. J Biomed Mater Res, 42, 66-75, 1998.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 31 (1996), S. 35-41 
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Tyrosine-derived polycarbonates are a new class of degradable polymers developed for orthopedic applications. In this study the long-term (48 week) in vivo degradation kinetics and host bone response to poly(DTE carbonate) and poly(DTH carbonate) were investigated using a canine bone chamber model. Poly(L-lactic acid) (PLA) served as a control material. Two chambers of each test material were retrieved at 6-, 12-, 24-, and 48-week time points. Tyrosine-derived polycarbonates were found to exhibit degradation kinetics comparable to PLA. Each test material lost approximately 50% of its initial molecular weight (Mw) over the 48-week test period. Poly(DTE carbonate) and poly(DTH carbonate) test chambers were characterized by sustained bone ingrowth throughout the 48 weeks. In contrast, bone ingrowth into the PLA chambers peaked at 24 weeks and dropped by half at the 48-week time point. A fibrous tissue layer was found surrounding the PLA implants at all time points. This fibrous tissue layer was notably absent at the interface between bone and the tyrosine-derived polycarbonates. Histologic sections revealed intimate contact between bone and tyrosine-derived polycarbonates. From a degradation-biocompatibility perspective, the tyrosine-derived polycarbonates appear to be comparable, if not superior, to PLA in this canine bone chamber model. © 1996 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 56 (1995), S. 229-232 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The standard Kohn-Sham formulation of density functional theory (DFT) is limited, for practical reasons, to systems of less than about 50-100 atoms. The computational effort scales as Natα, where Nat is the number of atoms and 2 〈 α 〉 3. (By comparison, conventional configuration interaction methods are limited to 5-10 atom systems.) This article deals with the prospect of practical methods that scale linearly in Nat and may thus allow calculations for systems of 103-104 atoms. The physical reason (“near-sightedness”) for linear scaling is presented. Implementations of linear scaling DFT by the use of generalized Wannier functions or the one-particle density matrix are discussed. © 1995 John Wiley & Sons, Inc.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    BioEssays 18 (1996), S. 505-513 
    ISSN: 0265-9247
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: This personal account traces a series of studies that led from DNA physical chemistry to anticancer drug mechanisms. Chemical crosslinking as a basis for anticancer drug actions had been suspected since the time of the first clinical reports of the effectiveness of nitrogen mustard in 1946. After the elucidation of the DNA helix-coil transition, several nearly concurrent findings in the early 1960s established the paradigm of DNA interstrand crosslinking. The DNA filter elution phenomenon was discovered in the early 1970s, and lent itself to the development of practical assays for DNA crosslinks and other DNA lesions in mammalian cells. The assays allowed studies of the effects of DNA damaging agents at pharmacologically or toxicologically relevant doses, and have been widely applied in studies of mutagenic and chemotherapeutic agents. During the period 1979-1986, DNA filter elution studies led to the paradigm of DNA topoisomerases as targets of anticancer drug action, and this has become one of the most active areas of anticancer drug development.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...