ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (69)
  • Molecular Diversity Preservation International  (62)
  • Cambridge University Press  (7)
  • American Chemical Society
  • National Academy of Sciences
  • 2020-2022  (64)
  • 2005-2009  (5)
  • Geography  (69)
Collection
  • Articles  (69)
Publisher
Years
Year
Journal
  • 1
    Publication Date: 2020-06-21
    Description: In recent years, indoor localization systems based on fingerprinting have had significant advances yielding high accuracies. Those approaches often use information about channel communication, such as channel state information (CSI) and received signal strength (RSS). Nevertheless, these features have always been employed separately. Although CSI provides more fine-grained physical layer information than RSS, in this manuscript, a methodology for indoor localization fusing both features from a single access point is proposed to provide a better accuracy. In addition, CSI amplitude information is processed to remove high variability information that can negatively influence location estimation. The methodology was implemented and validated in two scenarios using a single access point located in two different positions and configured in 2.4 and 5 GHz frequency bands. The experiments show that the methodology yields an average error distance of about 0.1 m using the 5 GHz band and a single access point.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-08-12
    Description: The Copernicus Climate Change Service (C3S) includes estimates of Essential Climate Variables (ECVs) as a series of Climate Data Records (CDRs) derived from satellite data. The C3S Surface Albedo (SA) v1.0 CDR is composed of observations from National Oceanic and Atmospheric Administration (NOAA) Very High Resolution Radiometers (AVHRR) (1981–2005), and VEGETATION sensors onboard Satellites for the Observation of the Earth (SPOT/VGT) (1998–2014) and Project for Onboard Autonomy satellite (PROBA-V) (2014–2020), and will continue with Sentinel-3 (from 2020 onwards). The goal of this study is to assess the uncertainties associated with the C3S PROBA-V SA v1.0 product, with a focus on the transition from SPOT/VGT to PROBA-V. The methodology followed the good practices recommended by the Land Product Validation sub-group (LPV) of the Working Group on Calibration and Validation (WGCV) of the Committee on Earth Observing Satellites (CEOS) for the validation of satellite-derived global albedo products. Several performance criteria were evaluated, including an intercomparison with National Aeronautics and Space Agency (NASA) MCD43A3 C6 products. C3S PROBA-V SA v1.0 and MCD43A3 C6 showed similar completeness but had higher fractions of missing data than C3S SPOT/VGT SA v1.0. C3S PROBA-V SA v1.0 showed similar precision (~1%) to MCD43A3 C6, improving the results of SPOT/VGT SA v1.0 (2–3%), but C3S PROBA-V SA v1.0 provided residual noise in the near-infrared (NIR). Good spatio-temporal continuity between C3S PROBA-V and SPOT/VGT SA v1.0 products was found with a mean bias between ±2%. The comparison with MCD43A3 C6 showed positive mean biases (5%, 8%, and 12% for visible, NIR and total shortwave, respectively). The accuracy assessment with ground measurements showed a median error of 18.4% with systematic overestimation (positive bias of 11.5%). The percentage of PROBA-V retrievals complying with the C3S target requirements was 28.6%.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-09-14
    Description: Climate change entails increasingly frequent, longer, and more severe droughts, especially in some regions, such as the Mediterranean region. Under these water scarcity conditions, agricultural yields of important crops, such as garlic, are threatened. Finding better adapted cultivars to low water availability environments could help mitigate the negative agricultural and economic impacts of climate change. For this purpose, plant phenotyping protocols based on remote-sensing technologies, such as thermal imaging, can be particularly valuable since they facilitate screening and selection of germplasm in a cost-effective manner, covering a wide range of temporal and spatial scales. In this study, the use of a thermal index known as the crop water stress index (CWSI) was tested as a predictor of bulb biomass and for the assessment of inter-cultivar variability of five garlic cultivars in response to a gradient of soil volumetric water contents (VWCs). Three experimental assays, one in the 2018 season and two in 2019, covering a wide range of water availability levels were carried out. Different linear models were developed, with CWSI and VWCs as continuous predictors of bulb biomass, and the factor cultivar as a categorical predictor. The results support the existence of inter-cultivar variation in terms of sensitivity to water availability. The most productive cultivars under favorable conditions were also the most sensitive to water availability. In contrast, the cultivars with lower bulb production potential displayed lower sensitivity to water availability and higher stability across experimental assays. The results also support that CWSI, which was sensitive to inter-cultivar variability, is a good predictor of garlic bulb biomass. Therefore, CWSI can be a valuable tool for garlic phenotyping and cultivar screening.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-03-25
    Description: This work aims at enhancing the current methodologies used for generating as-built CAD models suitable for advanced numerical simulations. To this end, this paper proposes the use of a wearable mobile mapping system that allows one to improve the digitalization stage in terms of flexibility and time required. The noise showed by the resulting point cloud, based on the simultaneous location and mapping (SLAM) solution, demands a post-processing stage that introduces the use of a parameter-free noise reduction filter. This filter improves the quality of the point cloud, allowing for the adjustment of surfaces by means of parametric and non-parametric shapes. These shapes are created by using reverse engineering procedures. The results showed during this investigation highlight a novel application of this sensor: the creation of as-built CAD models for advanced numerical simulations. The results of this investigation are complemented by a valuable contribution with respect to the use of an advanced restoration solution, by means of textile reinforced mortar. To this end, the CAD model is used as the geometrical base for several numerical simulations by means of the finite element method. All this procedure is applied in a construction with structural problems.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-09-30
    Description: The accurate identification of crops is essential to help environmental sustainability and support agricultural policies. This study presents the use of a Spanish radar mission, PAZ, to classify agricultural areas with a very high spatial resolution. PAZ was recently launched, and it operates at X band, joining the synthetic aperture radar (SAR) constellation along with TerraSAR-X and TanDEM-X satellites. Owing to its novelty and its ability to classify crop areas (both taking individually its time series and blending with the Sentinel-1 series), it has been tested in an agricultural area of the central-western part of Spain during 2020. The random forest algorithm was selected to classify the time series under five alternatives of standalone/fused data. The map accuracy resulting from the PAZ series standalone was acceptable, but it highlighted the need for a denser time-series of data. The overall accuracy provided by eight PAZ images or by eight Sentinel-1 images was below 60%. The fusion of both sets of eight images improved the overall accuracy by more than 10%. In addition, the exploitation of the whole Sentinel-1 series, with many more observations (up to 40 in the same temporal window) improved the results, reaching an overall accuracy around 76%. This overall performance was similar to that obtained by the joint use of all the available images of the two frequency bands (C and X).
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-07-07
    Description: Estimating extreme precipitation events over complex terrain is challenging but crucial for evaluating the performance of climate models for the present climate and expected changes of the climate in the future. New satellites operating in the microwave wavelengths have started to open new opportunities for performing such estimation at adequate temporal and spatial scales and within sensible error limits. This paper illustrates the feasibility and limits of estimating precipitation extremes from satellite data for climatological applications. Using a high-resolution gauge database as ground truth, it was found that global precipitation measurement (GPM) constellation data can provide valuable estimates of extreme precipitation over the southern slopes of the Pyrenees, a region comprising several climates and a very diverse terrain (a challenge for satellite precipitation algorithms). Validation using an object-based quality measure showed reasonable performance, suggesting that GPM estimates can be advantageous reference data for climate model evaluation.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-04-25
    Description: This study simulates annual net primary production (NPP) of forests over peninsular Spain during the years 2005–2012. The modeling strategy consists of a linked production efficiency model based on the Monteith approach and the bio-geochemical model Biome-BGC. Recently produced databases and data layers over the study area including meteorological daily series, ecophysiological parameters, and maps containing information about forest type, rooting depth, and growing stock volume (GSV), were employed. The models, which simulate forest processes assuming equilibrium conditions, were previously optimized for the study area. The production efficiency model was used to estimate daily gross primary production (GPP), while Biome-BGC was used to simulate growth (RG) and maintenance (RM) respirations. To account for actual forest conditions, GPP, RG, and RM were corrected using the ratio of the remotely-sensed derived actual to potential GSV as an indicator of the actual state of forests. The obtained results were evaluated against current annual increment observations from the Third Spanish Forest Inventory. Coefficients of determination ranged from 0.46 to 0.74 depending on the forest type. A simplified dataset was produced by applying regular increments in air temperature and reductions in precipitation to the original 2005–2012 daily series with the goal of covering the range of variation of the climate projections corresponding to the different climate change scenarios reported in the literature. The modified meteorological series were used to simulate new GPP, RG, and RM through Biome-BGC and corrected using GSV. Precipitation was confirmed as the main limiting factor in the study area. In the regions where precipitation was already a limiting factor during 2005–2012, both the increment in air temperature and the reduction in precipitation contributed to a reduction of NPP. In the regions where precipitation was not a limiting factor during 2005–2012, the increment in air temperature led to an increment of NPP. This study is therefore relevant to characterize the growth of Spanish forests both in current and expected climate conditions.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-04-21
    Description: Water vapor radiative effects (WVRE) at surface in the long-wave (LW) and short-wave (SW) spectral ranges under cloud and aerosol free conditions are analyzed for seven stations in Spain over the 2007–2015 period. WVRE is calculated as the difference between the net flux obtained by two radiative transfer simulations; one with water vapor from Global Positioning System (GPS) measurements and the other one without any water vapor (dry atmosphere). The WVRE in the LW ranges from 107.9 Wm 2 to 296.7 Wm − 2 , while in the SW it goes from − 64.9 Wm − 2 to − 6.0 Wm − 2 . The results show a clear seasonal cycle, which allows the classification of stations in three sub-regions. In general, for total (SW + LW) and LW WVRE, winter (DJF) and spring (MAM) values are lower than summer (JJA) and autumn (SON). However, in the case of SW WVRE, the weaker values are in winter and autumn, and the stronger ones in summer and spring. Positive trends for LW (and total) WVRE may partially explain the well-known increase of surface air temperatures in the study region. Additionally, negative trends for SW WVRE are especially remarkable, since they represent about a quarter of the contribution of aerosols to the strong brightening effect (increase of the SW radiation flux at surface associated with a reduction of the cloud cover and aerosol load) observed since the 2000s in the Iberian Peninsula, but with opposite sign, so it is suggested that water vapor could be partially masking the full magnitude of this brightening.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-04-18
    Description: Tropical forests regulate the global water and carbon cycles and also host most of the world’s biodiversity. Despite their importance, they are hard to survey due to their location, extent, and particularly, their cloud coverage. Clouds hinder the spatial and radiometric correction of satellite imagery and also diminishing the useful area on each image, making it difficult to monitor land change. For this reason, our purpose is to identify the cloud detection algorithm best suited for the Amazon rainforest on Sentinel–2 images. To achieve this, we tested four cloud detection algorithms on Sentinel–2 images spread in five areas of the Amazonia. Using more than eight thousand validation points, we compared four cloud detection methods: Fmask 4, MAJA, Sen2Cor, and s2cloudless. Our results point out that FMask 4 has the best overall accuracy on images of the Amazon region (90%), followed by Sen2Cor’s (79%), MAJA (69%), and S2cloudless (52%). We note the choice of method depends on the intended use. Since MAJA reduces the number of false positives by design, users that aim to improve the producer’s accuracy should consider its use.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-05-09
    Description: A multi-sensor and multi-scale monitoring tool for the spatially explicit and periodic monitoring of eutrophication in a small drinking water reservoir is presented. The tool was built with freely available satellite and in situ data combined with Unmanned Aerial Vehicle (UAV)-based technology. The goal is to evaluate the performance of a multi-platform approach for the trophic state monitoring with images obtained with MultiSpectral Sensors on board satellites Sentinel 2 (S2A and S2B), Landsat 8 (L8) and UAV. We assessed the performance of three different sensors (MultiSpectral Instrument (MSI), Operational Land Imager (OLI) and Rededge Micasense) for retrieving the pigment chlorophyll-a (chl-a), as a quantitative descriptor of phytoplankton biomass and trophic level. The study was conducted in a waterbody affected by cyanobacterial blooms, one of the most important eutrophication-derived risks for human health. Different empirical models and band indices were evaluated. Spectral band combinations using red and near-infrared (NIR) bands were the most suitable for retrieving chl-a concentration (especially 2 band algorithm (2BDA), the Surface Algal Bloom Index (SABI) and 3 band algorithm (3BDA)) even though blue and green bands were useful to classify UAV images into two chl-a ranges. The results show a moderately good agreement among the three sensors at different spatial resolutions (10 m., 30 m. and 8 cm.), indicating a high potential for the development of a multi-platform and multi-sensor approach for the eutrophication monitoring of small reservoirs.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...