ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mice  (96)
  • Ecology  (26)
  • American Association for the Advancement of Science (AAAS)  (118)
  • Environment Agency  (3)
  • American Institute of Physics (AIP)
  • Nature Publishing Group
  • Wiley
  • 2020-2022  (3)
  • 2015-2019  (119)
Collection
Years
Year
  • 1
    facet.materialart.
    Unknown
    Tucker, M. A., Böhning-Gaese, K., Fagan, W. F., Fryxell, J. M., Van Moorter, B., Alberts, S. C., Ali, A. H., Allen, A. M., Attias, N., Avgar, T., Bartlam-Brooks, H., Bayarbaatar, B., Belant, J. L., Bertassoni, A., Beyer, D., Bidner, L., van Beest, F. M., Blake, S., Blaum, N., Bracis, C., Brown, D., de Bruyn, P. J. N., Cagnacci, F., Calabrese, J. M., Camilo-Alves, C., Chamaille-Jammes, S., Chiaradia, A., Davidson, S. C., Dennis, T., De; Stefano, S., Diefenbach, D., Douglas-Hamilton, I., Fennessy, J., Fichtel, C., Fiedler, W., Fischer, C., Fischhoff, I., Fleming, C. H., Ford, A. T., Fritz, S. A., Gehr, B., Goheen, J. R., Gurarie, E., Hebblewhite, M., Heurich, M., Hewison, A. J. M., Hof, C., Hurme, E., Isbell, L. A., Janssen, R., Jeltsch, F., Kaczensky, P., Kane, A., Kappeler, P. M., Kauffman, M., Kays, R., Kimuyu, D., Koch, F., Kranstauber, B., La; Point, S., Leimgruber, P., Linnell, J. D. C., Lopez-Lopez, P., Markham, A. C., Mattisson, J., Medici, E. P., Mellone, U., Merrill, E., de Miranda Mourao, G., Morato, R. G., Morellet, N., Morrison, T. A., Diaz-Munoz, S. L., Mysterud, A., Nandintsetseg, D., Nathan, R., Niamir, A., Odden, J., OHara, R. B., Oliveira-Santos, L. G. R., Olson, K. A., Patterson, B. D., Cunha de Paula, R., Pedrotti, L., Reineking, B., Rimmler, M., Rogers, T. L., Rolandsen, C. M., Rosenberry, C. S., Rubenstein, D. I., Safi, K., Saïd, S., Sapir, N., Sawyer, H., Schmidt, N. M., Selva, N., Sergiel, A., Shiilegdamba, E., Silva, J. P., Singh, N., Solberg, E. J., Spiegel, O., Strand, O., Sundaresan, S., Ullmann, W., Voigt, U., Wall, J., Wattles, D., Wikelski, M., Wilmers, C. C., Wilson, J. W., Wittemyer, G., Zieba, F., Zwijacz-Kozica, T., Mueller, T.
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-01-26
    Description: Animal movement is fundamental for ecosystem functioning and species survival, yet the effects of the anthropogenic footprint on animal movements have not been estimated across species. Using a unique GPS-tracking database of 803 individuals across 57 species, we found that movements of mammals in areas with a comparatively high human footprint were on average one-half to one-third the extent of their movements in areas with a low human footprint. We attribute this reduction to behavioral changes of individual animals and to the exclusion of species with long-range movements from areas with higher human impact. Global loss of vagility alters a key ecological trait of animals that affects not only population persistence but also ecosystem processes such as predator-prey interactions, nutrient cycling, and disease transmission.
    Keywords: Ecology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-05-25
    Description: Chisholm and Fung claim that our method of estimating conspecific negative density dependence (CNDD) in recruitment is systematically biased, and present an alternative method that shows no latitudinal pattern in CNDD. We demonstrate that their approach produces strongly biased estimates of CNDD, explaining why they do not detect a latitudinal pattern. We also address their methodological concerns using an alternative distance-weighted approach, which supports our original findings of a latitudinal gradient in CNDD and a latitudinal shift in the relationship between CNDD and species abundance.
    Keywords: Ecology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-07-15
    Description: Human inborn errors of immunity mediated by the cytokines interleukin-17A and interleukin-17F (IL-17A/F) underlie mucocutaneous candidiasis, whereas inborn errors of interferon-gamma (IFN-gamma) immunity underlie mycobacterial disease. We report the discovery of bi-allelic RORC loss-of-function mutations in seven individuals from three kindreds of different ethnic origins with both candidiasis and mycobacteriosis. The lack of functional RORgamma and RORgammaT isoforms resulted in the absence of IL-17A/F-producing T cells in these individuals, probably accounting for their chronic candidiasis. Unexpectedly, leukocytes from RORgamma- and RORgammaT-deficient individuals also displayed an impaired IFN-gamma response to Mycobacterium. This principally reflected profoundly defective IFN-gamma production by circulating gammadelta T cells and CD4(+)CCR6(+)CXCR3(+) alphabeta T cells. In humans, both mucocutaneous immunity to Candida and systemic immunity to Mycobacterium require RORgamma, RORgammaT, or both.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4668938/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4668938/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Okada, Satoshi -- Markle, Janet G -- Deenick, Elissa K -- Mele, Federico -- Averbuch, Dina -- Lagos, Macarena -- Alzahrani, Mohammed -- Al-Muhsen, Saleh -- Halwani, Rabih -- Ma, Cindy S -- Wong, Natalie -- Soudais, Claire -- Henderson, Lauren A -- Marzouqa, Hiyam -- Shamma, Jamal -- Gonzalez, Marcela -- Martinez-Barricarte, Ruben -- Okada, Chizuru -- Avery, Danielle T -- Latorre, Daniela -- Deswarte, Caroline -- Jabot-Hanin, Fabienne -- Torrado, Egidio -- Fountain, Jeffrey -- Belkadi, Aziz -- Itan, Yuval -- Boisson, Bertrand -- Migaud, Melanie -- Arlehamn, Cecilia S Lindestam -- Sette, Alessandro -- Breton, Sylvain -- McCluskey, James -- Rossjohn, Jamie -- de Villartay, Jean-Pierre -- Moshous, Despina -- Hambleton, Sophie -- Latour, Sylvain -- Arkwright, Peter D -- Picard, Capucine -- Lantz, Olivier -- Engelhard, Dan -- Kobayashi, Masao -- Abel, Laurent -- Cooper, Andrea M -- Notarangelo, Luigi D -- Boisson-Dupuis, Stephanie -- Puel, Anne -- Sallusto, Federica -- Bustamante, Jacinta -- Tangye, Stuart G -- Casanova, Jean-Laurent -- 8UL1TR000043/TR/NCATS NIH HHS/ -- HHSN272200900044C/AI/NIAID NIH HHS/ -- HHSN272200900044C/PHS HHS/ -- R37 AI095983/AI/NIAID NIH HHS/ -- R37AI095983/AI/NIAID NIH HHS/ -- T32 AI007512/AI/NIAID NIH HHS/ -- Canadian Institutes of Health Research/Canada -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Aug 7;349(6248):606-13. doi: 10.1126/science.aaa4282. Epub 2015 Jul 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. jmarkle@rockefeller.edu jean-laurent.casanova@rockefeller.edu. ; Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia. St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia. ; Institute for Research in Biomedicine, University of Italian Switzerland, Bellinzona, Switzerland. ; Department of Pediatrics, Hadassah University Hospital, Jerusalem, Israel. ; Department of Immunology, School of Medicine, Universidad de Valparaiso, Santiago, Chile. Department of Pediatrics, Padre Hurtado Hospital and Clinica Alemana, Santiago, Chile. ; Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia. ; Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia. Department of Pediatrics, Prince Naif Center for Immunology Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia. ; Department of Pediatrics, Prince Naif Center for Immunology Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia. ; Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia. ; Institut Curie, INSERM U932, Paris, France. ; Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA. ; Caritas Baby Hospital, Post Office Box 11535, Jerusalem, Israel. ; Department of Immunology, School of Medicine, Universidad de Valparaiso, Santiago, Chile. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. ; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris, France. Paris Descartes University, Imagine Institute, Paris, France. ; Trudeau Institute, Saranac Lake, NY 12983, USA. ; La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA. ; Department of Radiology, Assistance Publique-Hopitaux de Paris (AP-HP), Necker Hospital for Sick Children, Paris, France. ; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia. ; Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia. Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia. Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK. ; Laboratoire Dynamique du Genome et Systeme Immunitaire, INSERM UMR 1163, Universite Paris Descartes-Sorbonne Paris Cite, Imagine Institute, Paris, France. ; Laboratoire Dynamique du Genome et Systeme Immunitaire, INSERM UMR 1163, Universite Paris Descartes-Sorbonne Paris Cite, Imagine Institute, Paris, France. Pediatric Hematology-Immunology Unit, AP-HP, Necker Hospital for Sick Children, Paris, France. ; Institute of Cellular Medicine, Newcastle University and Great North Children's Hospital, Newcastle upon Tyne NE4 6BE, UK. ; Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Universite Paris Descartes-Sorbonne Paris Cite, Imagine Institute, Paris, France. ; Department of Paediatric Allergy Immunology, University of Manchester, Royal Manchester Children's Hospital, Manchester, UK. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris, France. Paris Descartes University, Imagine Institute, Paris, France. Pediatric Hematology-Immunology Unit, AP-HP, Necker Hospital for Sick Children, Paris, France. Center for the Study of Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France. ; Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris, France. Paris Descartes University, Imagine Institute, Paris, France. ; Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA. Manton Center for Orphan Disease Research, Children's Hospital, Boston, MA 02115, USA. ; Institute for Research in Biomedicine, University of Italian Switzerland, Bellinzona, Switzerland. Center of Medical Immunology, Institute for Research in Biomedicine, University of Italian Switzerland, Bellinzona, Switzerland. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris, France. Paris Descartes University, Imagine Institute, Paris, France. Center for the Study of Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris, France. Paris Descartes University, Imagine Institute, Paris, France. Pediatric Hematology-Immunology Unit, AP-HP, Necker Hospital for Sick Children, Paris, France. Howard Hughes Medical Institute, New York, NY 10065, USA. jmarkle@rockefeller.edu jean-laurent.casanova@rockefeller.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26160376" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Candida albicans/*immunology ; Candidiasis, Chronic Mucocutaneous/complications/*genetics/immunology ; Cattle ; Child ; Child, Preschool ; DNA Mutational Analysis ; Exome/genetics ; Female ; Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor ; Humans ; Immunity/*genetics ; Interferon-gamma/immunology ; Interleukin-17/immunology ; Mice ; Mutation ; Mycobacterium bovis/immunology/isolation & purification ; Mycobacterium tuberculosis/immunology/isolation & purification ; Nuclear Receptor Subfamily 1, Group F, Member 3/*genetics ; Pedigree ; Receptors, Antigen, T-Cell, alpha-beta/genetics/immunology ; Receptors, Antigen, T-Cell, gamma-delta/genetics/immunology ; Severe Combined Immunodeficiency/*genetics ; T-Lymphocytes/immunology ; Thymus Gland/abnormalities/immunology ; Tuberculosis, Bovine/*genetics/immunology ; Tuberculosis, Pulmonary/*genetics/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-06-30
    Description: Theory predicts that higher biodiversity in the tropics is maintained by specialized interactions among plants and their natural enemies that result in conspecific negative density dependence (CNDD). By using more than 3000 species and nearly 2.4 million trees across 24 forest plots worldwide, we show that global patterns in tree species diversity reflect not only stronger CNDD at tropical versus temperate latitudes but also a latitudinal shift in the relationship between CNDD and species abundance. CNDD was stronger for rare species at tropical versus temperate latitudes, potentially causing the persistence of greater numbers of rare species in the tropics. Our study reveals fundamental differences in the nature of local-scale biotic interactions that contribute to the maintenance of species diversity across temperate and tropical communities.
    Keywords: Ecology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-05-25
    Description: Hülsmann and Hartig suggest that ecological mechanisms other than specialized natural enemies or intraspecific competition contribute to our estimates of conspecific negative density dependence (CNDD). To address their concern, we show that our results are not the result of a methodological artifact and present a null-model analysis that demonstrates that our original findings—(i) stronger CNDD at tropical relative to temperate latitudes and (ii) a latitudinal shift in the relationship between CNDD and species abundance—persist even after controlling for other processes that might influence spatial relationships between adults and recruits.
    Keywords: Ecology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-01-12
    Description: We present a phylogenetic analysis of spiders using a dataset of 932 spider species, representing 115 families (only the family Synaphridae is unrepresented), 700 known genera, and additional representatives of 26 unidentified or undescribed genera. Eleven genera of the orders Amblypygi, Palpigradi, Schizomida and Uropygi are included as outgroups. The dataset includes six markers from the mitochondrial (12S, 16S, COI) and nuclear (histone H3, 18S, 28S) genomes, and was analysed by multiple methods, including constrained analyses using a highly supported backbone tree from transcriptomic data. We recover most of the higher-level structure of the spider tree with good support, including Mesothelae, Opisthothelae, Mygalomorphae and Araneomorphae. Several of our analyses recover Hypochilidae and Filistatidae as sister groups, as suggested by previous transcriptomic analyses. The Synspermiata are robustly supported, and the families Trogloraptoridae and Caponiidae are found as sister to the Dysderoidea. Our results support the Lost Tracheae clade, including Pholcidae, Tetrablemmidae, Diguetidae, Plectreuridae and the family Pacullidae (restored status) separate from Tetrablemmidae. The Scytodoidea include Ochyroceratidae along with Sicariidae, Scytodidae, Drymusidae and Periegopidae; our results are inconclusive about the separation of these last two families. We did not recover monophyletic Austrochiloidea and Leptonetidae, but our data suggest that both groups are more closely related to the Cylindrical Gland Spigot clade rather than to Synspermiata. Palpimanoidea is not recovered by our analyses, but also not strongly contradicted. We find support for Entelegynae and Oecobioidea (Oecobiidae plus Hersiliidae), and ambiguous placement of cribellate orb-weavers, compatible with their non-monophyly. Nicodamoidea (Nicodamidae plus Megadictynidae) and Araneoidea composition and relationships are consistent with recent analyses. We did not obtain resolution for the titanoecoids (Titanoecidae and Phyxelididae), but the Retrolateral Tibial Apophysis clade is well supported. Penestomidae, and probably Homalonychidae, are part of Zodarioidea, although the latter family was set apart by recent transcriptomic analyses. Our data support a large group that we call the marronoid clade (including the families Amaurobiidae, Desidae, Dictynidae, Hahniidae, Stiphidiidae, Agelenidae and Toxopidae). The circumscription of most marronoid families is redefined here. Amaurobiidae include the Amaurobiinae and provisionally Macrobuninae. We transfer Malenellinae (Malenella, from Anyphaenidae), Chummidae (Chumma) (new syn.) and Tasmarubriinae (Tasmarubrius, Tasmabrochus and Teeatta, from Amphinectidae) to Macrobuninae. Cybaeidae are redefined to include Calymmaria, Cryphoeca, Ethobuella and Willisius (transferred from Hahniidae), and Blabomma and Yorima (transferred from Dictynidae). Cycloctenidae are redefined to include Orepukia (transferred from Agelenidae) and Pakeha and Paravoca (transferred from Amaurobiidae). Desidae are redefined to include five subfamilies: Amphinectinae, with Amphinecta, Mamoea, Maniho, Paramamoea and Rangitata (transferred from Amphinectidae); Ischaleinae, with Bakala and Manjala (transferred from Amaurobiidae) and Ischalea (transferred from Stiphidiidae); Metaltellinae, with Austmusia, Buyina, Calacadia, Cunnawarra, Jalkaraburra, Keera, Magua, Metaltella, Penaoola and Quemusia; Porteriinae (new rank), with Baiami, Cambridgea, Corasoides and Nanocambridgea (transferred from Stiphidiidae); and Desinae, with Desis, and provisionally Poaka (transferred from Amaurobiidae) and Barahna (transferred from Stiphidiidae). Argyroneta is transferred from Cybaeidae to Dictynidae. Cicurina is transferred from Dictynidae to Hahniidae. The genera Neoramia (from Agelenidae) and Aorangia, Marplesia and Neolana (from Amphinectidae) are transferred to Stiphidiidae. The family Toxopidae (restored status) includes two subfamilies: Myroinae, with Gasparia, Gohia, Hulua, Neomyro, Myro, Ommatauxesis and Otagoa (transferred from Desidae); and Toxopinae, with Midgee and Jamara, formerly Midgeeinae, new syn. (transferred from Amaurobiidae) and Hapona, Laestrygones, Lamina, Toxops and Toxopsoides (transferred from Desidae). We obtain a monophyletic Oval Calamistrum clade and Dionycha; Sparassidae, however, are not dionychans, but probably the sister group of those two clades. The composition of the Oval Calamistrum clade is confirmed (including Zoropsidae, Udubidae, Ctenidae, Oxyopidae, Senoculidae, Pisauridae, Trechaleidae, Lycosidae, Psechridae and Thomisidae), affirming previous findings on the uncertain relationships of the \xe2\x80\x9cctenids\xe2\x80\x9d Ancylometes and Cupiennius, although a core group of Ctenidae are well supported. Our data were ambiguous as to the monophyly of Oxyopidae. In Dionycha, we found a first split of core Prodidomidae, excluding the Australian Molycriinae, which fall distantly from core prodidomids, among gnaphosoids. The rest of the dionychans form two main groups, Dionycha part A and part B. The former includes much of the Oblique Median Tapetum clade (Trochanteriidae, Gnaphosidae, Gallieniellidae, Phrurolithidae, Trachelidae, Gnaphosidae, Ammoxenidae, Lamponidae and the Molycriinae), and also Anyphaenidae and Clubionidae. Orthobula is transferred from Phrurolithidae to Trachelidae. Our data did not allow for complete resolution for the gnaphosoid families. Dionycha part B includes the families Salticidae, Eutichuridae, Miturgidae, Philodromidae, Viridasiidae, Selenopidae, Corinnidae and Xenoctenidae (new fam., including Xenoctenus, Paravulsor and Odo, transferred from Miturgidae, as well as Incasoctenus from Ctenidae). We confirm the inclusion of Zora (formerly Zoridae) within Miturgidae.
    Keywords: Ecology ; Evolution ; Behavior and Systematics
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-10-05
    Description: Biodiversity experiments have shown that species loss reduces ecosystem functioning in grassland. To test whether this result can be extrapolated to forests, the main contributors to terrestrial primary productivity, requires large-scale experiments. We manipulated tree species richness by planting more than 150,000 trees in plots with 1 to 16 species. Simulating multiple extinction scenarios, we found that richness strongly increased stand-level productivity. After 8 years, 16-species mixtures had accumulated over twice the amount of carbon found in average monocultures and similar amounts as those of two commercial monocultures. Species richness effects were strongly associated with functional and phylogenetic diversity. A shrub addition treatment reduced tree productivity, but this reduction was smaller at high shrub species richness. Our results encourage multispecies afforestation strategies to restore biodiversity and mitigate climate change.
    Keywords: Ecology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-06-20
    Description: A major goal of HIV-1 vaccine research is the design of immunogens capable of inducing broadly neutralizing antibodies (bnAbs) that bind to the viral envelope glycoprotein (Env). Poor binding of Env to unmutated precursors of bnAbs, including those of the VRC01 class, appears to be a major problem for bnAb induction. We engineered an immunogen that binds to VRC01-class bnAb precursors and immunized knock-in mice expressing germline-reverted VRC01 heavy chains. Induced antibodies showed characteristics of VRC01-class bnAbs, including a short CDRL3 (light-chain complementarity-determining region 3) and mutations that favored binding to near-native HIV-1 gp120 constructs. In contrast, native-like immunogens failed to activate VRC01-class precursors. The results suggest that rational epitope design can prime rare B cell precursors for affinity maturation to desired targets.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4669217/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4669217/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jardine, Joseph G -- Ota, Takayuki -- Sok, Devin -- Pauthner, Matthias -- Kulp, Daniel W -- Kalyuzhniy, Oleksandr -- Skog, Patrick D -- Thinnes, Theresa C -- Bhullar, Deepika -- Briney, Bryan -- Menis, Sergey -- Jones, Meaghan -- Kubitz, Mike -- Spencer, Skye -- Adachi, Yumiko -- Burton, Dennis R -- Schief, William R -- Nemazee, David -- 1UM1AI100663/AI/NIAID NIH HHS/ -- P01 AI094419/AI/NIAID NIH HHS/ -- P01AI081625/AI/NIAID NIH HHS/ -- R01 AI073148/AI/NIAID NIH HHS/ -- R01 AI081625/AI/NIAID NIH HHS/ -- R01-AI073148/AI/NIAID NIH HHS/ -- T32 AI007244/AI/NIAID NIH HHS/ -- UM1 AI100663/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2015 Jul 10;349(6244):156-61. doi: 10.1126/science.aac5894. Epub 2015 Jun 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center (NAC), The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. ; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. ; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center (NAC), The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02129, USA. nemazee@scripps.edu schief@scripps.edu burton@scripps.edu. ; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. nemazee@scripps.edu schief@scripps.edu burton@scripps.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26089355" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/*immunology ; Animals ; Antibodies, Monoclonal/biosynthesis/*immunology ; Antibodies, Neutralizing/biosynthesis/*immunology ; Antibody Affinity ; B-Lymphocytes/immunology ; Complementarity Determining Regions/genetics/immunology ; Epitopes/genetics/immunology ; HIV Antibodies/biosynthesis/*immunology ; HIV Envelope Protein gp120/genetics/*immunology ; HIV Infections/*prevention & control ; HIV-1/*immunology ; Immunoglobulin Heavy Chains/genetics/immunology ; Mice ; Mice, Knockout
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-03-12
    Description: Scavenger receptor BI (SR-BI) is the major receptor for high-density lipoprotein (HDL) cholesterol (HDL-C). In humans, high amounts of HDL-C in plasma are associated with a lower risk of coronary heart disease (CHD). Mice that have depleted Scarb1 (SR-BI knockout mice) have markedly elevated HDL-C levels but, paradoxically, increased atherosclerosis. The impact of SR-BI on HDL metabolism and CHD risk in humans remains unclear. Through targeted sequencing of coding regions of lipid-modifying genes in 328 individuals with extremely high plasma HDL-C levels, we identified a homozygote for a loss-of-function variant, in which leucine replaces proline 376 (P376L), in SCARB1, the gene encoding SR-BI. The P376L variant impairs posttranslational processing of SR-BI and abrogates selective HDL cholesterol uptake in transfected cells, in hepatocyte-like cells derived from induced pluripotent stem cells from the homozygous subject, and in mice. Large population-based studies revealed that subjects who are heterozygous carriers of the P376L variant have significantly increased levels of plasma HDL-C. P376L carriers have a profound HDL-related phenotype and an increased risk of CHD (odds ratio = 1.79, which is statistically significant).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zanoni, Paolo -- Khetarpal, Sumeet A -- Larach, Daniel B -- Hancock-Cerutti, William F -- Millar, John S -- Cuchel, Marina -- DerOhannessian, Stephanie -- Kontush, Anatol -- Surendran, Praveen -- Saleheen, Danish -- Trompet, Stella -- Jukema, J Wouter -- De Craen, Anton -- Deloukas, Panos -- Sattar, Naveed -- Ford, Ian -- Packard, Chris -- Majumder, Abdullah al Shafi -- Alam, Dewan S -- Di Angelantonio, Emanuele -- Abecasis, Goncalo -- Chowdhury, Rajiv -- Erdmann, Jeanette -- Nordestgaard, Borge G -- Nielsen, Sune F -- Tybjaerg-Hansen, Anne -- Schmidt, Ruth Frikke -- Kuulasmaa, Kari -- Liu, Dajiang J -- Perola, Markus -- Blankenberg, Stefan -- Salomaa, Veikko -- Mannisto, Satu -- Amouyel, Philippe -- Arveiler, Dominique -- Ferrieres, Jean -- Muller-Nurasyid, Martina -- Ferrario, Marco -- Kee, Frank -- Willer, Cristen J -- Samani, Nilesh -- Schunkert, Heribert -- Butterworth, Adam S -- Howson, Joanna M M -- Peloso, Gina M -- Stitziel, Nathan O -- Danesh, John -- Kathiresan, Sekar -- Rader, Daniel J -- CHD Exome+ Consortium -- CARDIoGRAM Exome Consortium -- Global Lipids Genetics Consortium -- R01 DK089256/DK/NIDDK NIH HHS/ -- R01 HL117078/HL/NHLBI NIH HHS/ -- TL1 RR024133/RR/NCRR NIH HHS/ -- TL1R000138/PHS HHS/ -- TL1RR024133/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2016 Mar 11;351(6278):1166-71. doi: 10.1126/science.aad3517.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Genetics and Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. ; Departments of Genetics and Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. INSERM UMR 1166 ICAN, Universite Pierre et Marie Curie Paris 6, Hopital de la Pitie, Paris, France. ; INSERM UMR 1166 ICAN, Universite Pierre et Marie Curie Paris 6, Hopital de la Pitie, Paris, France. ; Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK. ; Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK. Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Centre for Non-Communicable Diseases, Karachi, Pakistan. ; Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, Netherlands. Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands. ; Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands. The Interuniversity Cardiology Institute of the Netherlands, Utrecht, Netherlands. ; Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, Netherlands. ; Wellcome Trust Sanger Institute, Genome Campus, Hinxton, UK. ; Institute of Cardiovascular and Medical Sciences, British Heart Foundation, Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK. ; Robertson Center for Biostatistics, University of Glasgow, Glasgow, UK. ; Glasgow Clinical Research Facility, Western Infirmary, Glasgow, UK. ; National Institute of Cardiovascular Diseases, Sher-e-Bangla Nagar, Dhaka, Bangladesh. ; International Centre for Diarrhoeal Disease Research, Mohakhali, Dhaka, Bangladesh. ; Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA. ; Institute for Integrative and Experimental Genomics, University of Lubeck, Lubeck 23562, Germany. ; Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark. ; Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark. ; Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospitals, Copenhagen, Denmark. ; Department of Health, National Institute for Health and Welfare, Helsinki, Finland. ; Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA. ; Department of Health, National Institute for Health and Welfare, Helsinki, Finland. Institute of Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland. ; Department of General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany. University Medical Center Hamburg-Eppendorf, Hamburg, Germany. ; Department of Epidemiology and Public Health, Institut Pasteur de Lille, Lille, France. ; Department of Epidemiology and Public Health, University of Strasbourg, Strasbourg, France. ; Department of Epidemiology, Toulouse University-CHU Toulouse, Toulouse, France. ; Institute of Genetic Epidemiology, Helmholtz Zentrum Munchen-German Research Center for Environmental Health, Neuherberg, Germany. Department of Medicine I, Ludwig-Maximilians-University Munich, Munich, Germany. ; Research Centre in Epidemiology and Preventive Medicine, Department of Clinical and Experimental Medicine, University of Insubria, Varese, Italy. ; UKCRC Centre of Excellence for Public Health, Queens University, Belfast, Northern Ireland. ; Department of Computational Medicine and Bioinformatics, Department of Human Genetics, and Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA. ; Department of Cardiovascular Sciences, University of Leicester, Leicester, UK. National Institute for Health Research (NIHR) Leicester Cardiovascular Biomedical Research Unit, Glenfield Hotel, Leicester, UK. ; Deutsches Herzzentrum Munchen, Technische Universitat Munchen, Munich, Germany. ; Broad Institute and Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA. ; Department of Medicine, Division of Cardiology, Department of Genetics, and the McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA. ; Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK. Wellcome Trust Sanger Institute, Genome Campus, Hinxton, UK. ; Departments of Genetics and Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. rader@mail.med.upenn.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26965621" target="_blank"〉PubMed〈/a〉
    Keywords: Aged ; Amino Acid Substitution ; Animals ; Cholesterol, HDL/*blood ; Coronary Disease/*blood/*genetics ; DNA Mutational Analysis ; Female ; Genetic Variation ; Heterozygote ; Homozygote ; Humans ; Leucine/genetics ; Male ; Mice ; Middle Aged ; Proline/genetics ; Protein Processing, Post-Translational ; Risk ; Scavenger Receptors, Class B/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-06-13
    Description: Agents that promote tissue regeneration could be beneficial in a variety of clinical settings, such as stimulating recovery of the hematopoietic system after bone marrow transplantation. Prostaglandin PGE2, a lipid signaling molecule that supports expansion of several types of tissue stem cells, is a candidate therapeutic target for promoting tissue regeneration in vivo. Here, we show that inhibition of 15-hydroxyprostaglandin dehydrogenase (15-PGDH), a prostaglandin-degrading enzyme, potentiates tissue regeneration in multiple organs in mice. In a chemical screen, we identify a small-molecule inhibitor of 15-PGDH (SW033291) that increases prostaglandin PGE2 levels in bone marrow and other tissues. SW033291 accelerates hematopoietic recovery in mice receiving a bone marrow transplant. The same compound also promotes tissue regeneration in mouse models of colon and liver injury. Tissues from 15-PGDH knockout mice demonstrate similar increased regenerative capacity. Thus, 15-PGDH inhibition may be a valuable therapeutic strategy for tissue regeneration in diverse clinical contexts.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4481126/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4481126/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Yongyou -- Desai, Amar -- Yang, Sung Yeun -- Bae, Ki Beom -- Antczak, Monika I -- Fink, Stephen P -- Tiwari, Shruti -- Willis, Joseph E -- Williams, Noelle S -- Dawson, Dawn M -- Wald, David -- Chen, Wei-Dong -- Wang, Zhenghe -- Kasturi, Lakshmi -- Larusch, Gretchen A -- He, Lucy -- Cominelli, Fabio -- Di Martino, Luca -- Djuric, Zora -- Milne, Ginger L -- Chance, Mark -- Sanabria, Juan -- Dealwis, Chris -- Mikkola, Debra -- Naidoo, Jacinth -- Wei, Shuguang -- Tai, Hsin-Hsiung -- Gerson, Stanton L -- Ready, Joseph M -- Posner, Bruce -- Willson, James K V -- Markowitz, Sanford D -- 1P01CA95471-09/CA/NCI NIH HHS/ -- 5P30 CA142543-03/CA/NCI NIH HHS/ -- P01 CA095471/CA/NCI NIH HHS/ -- P30 CA043703/CA/NCI NIH HHS/ -- P30 CA142543/CA/NCI NIH HHS/ -- P30 DK020572/DK/NIDDK NIH HHS/ -- P30 DK097948/DK/NIDDK NIH HHS/ -- P50 CA130810/CA/NCI NIH HHS/ -- P50 CA150964/CA/NCI NIH HHS/ -- R01 CA127590/CA/NCI NIH HHS/ -- R25 CA148052/CA/NCI NIH HHS/ -- R25CA148052/CA/NCI NIH HHS/ -- U54 HL119810/HL/NHLBI NIH HHS/ -- U54HL119810/HL/NHLBI NIH HHS/ -- UL1 TR000439/TR/NCATS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Jun 12;348(6240):aaa2340. doi: 10.1126/science.aaa2340.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA. ; Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA. Department of Gastroenterology, Haeundae Paik Hospital, Inje University, Busan 612896, South Korea. ; Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA. Department of Surgery, Busan Paik Hospital, and Paik Institute of Clinical Research and Ocular Neovascular Research Center, Inje University, Busan, South Korea. ; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. ; Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA. Case Medical Center, University Hospitals of Cleveland, Cleveland, OH 44106, USA. ; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA. Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA. Case Medical Center, University Hospitals of Cleveland, Cleveland, OH 44106, USA. ; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA. Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA. ; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA. Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA. ; Department of Family Medicine, University of Michigan, Ann Arbor MI 48109, USA. ; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA. ; Proteomics Center, Case Western Reserve University, Cleveland, OH 44106, USA. ; Department of Surgery, Case Western Reserve University, Cleveland, OH 44106, USA. Case Medical Center, University Hospitals of Cleveland, Cleveland, OH 44106, USA. ; Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA. ; College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA. ; Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA. Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA. Case Medical Center, University Hospitals of Cleveland, Cleveland, OH 44106, USA. sxm10@cwru.edu james.willson@utsouthwestern.edu slg5@cwru.edu joseph.ready@utsouthwestern.edu bruce.posner@utsouthwestern.edu. ; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. sxm10@cwru.edu james.willson@utsouthwestern.edu slg5@cwru.edu joseph.ready@utsouthwestern.edu bruce.posner@utsouthwestern.edu. ; Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. sxm10@cwru.edu james.willson@utsouthwestern.edu slg5@cwru.edu joseph.ready@utsouthwestern.edu bruce.posner@utsouthwestern.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26068857" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Marrow Transplantation ; Colitis/enzymology/prevention & control ; Dinoprostone/metabolism ; Enzyme Inhibitors/chemistry/pharmacology ; Hematopoiesis/drug effects ; Hydroxyprostaglandin Dehydrogenases/antagonists & inhibitors/genetics/*physiology ; Liver Regeneration/drug effects ; Mice ; Mice, Knockout ; Prostaglandins/*metabolism ; Pyridines/chemistry/pharmacology ; Regeneration/drug effects/genetics/*physiology ; Thiophenes/chemistry/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...