ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (7)
  • 2000-2004  (403)
  • 1935-1939  (78)
  • 1930-1934
Collection
Language
Years
Year
  • 1
    Monograph available for loan
    Monograph available for loan
    Potsdam : PIK
    Call number: M 07.0147
    Type of Medium: Monograph available for loan
    Pages: 32 S.
    Classification:
    Meteorology and Climatology
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-06
    Description: The Humboldt Upwelling System is of global interest due to its importance to fisheries, though the origin of its high productivity remains elusive. In regional physical‐biogeochemical model simulations, the seasonal amplitude of mesozooplankton net production exceeds that of phytoplankton, indicating “seasonal trophic amplification.” An analytical approach identifies amplification to be driven by a seasonally varying trophic transfer efficiency due to mixed layer variations. The latter alters the vertical distribution of phytoplankton and thus the zooplankton and phytoplankton encounters, with lower encounters occurring in a deeper mixed layer where phytoplankton are diluted. In global model simulations, mixed layer depth appears to affect trophic transfer similarly in other productive regions. Our results highlight the importance of mixed layer depth for trophodynamics on a seasonal scale with potential significant implications, given mixed layer depth changes projected under climate change.
    Description: Plain Language Summary: The Humboldt Upwelling System is a fishery‐important region. A common assumption is that a certain amount of phytoplankton supports a proportional amount of fish. However, we find that a small seasonal change in phytoplankton can trigger a larger variation in zooplankton. This implies that one may underestimate changes in fish solely based on phytoplankton. Using ecosystem model simulations, we investigate why changes of phytoplankton are not proportionally reflected in zooplankton. The portion of phytoplankton that ends up in zooplankton is controlled by the changing depth of the surface ocean “mixed layer.” The “mixed layer” traps both the phytoplankton and zooplankton in a limited amount of space. When the “mixed layer” is shallow, zooplankton can feed more efficiently on phytoplankton as both are compressed in a comparatively smaller space. We conclude that in the Humboldt System, and other “food‐rich” regions, feeding efficiently, determined by the “mixed layer,” is more important than how much food is available.
    Description: Key Points: Environmental factors strongly affect plankton trophodynamics on a seasonal scale. Seasonal trophic amplification in the Humboldt system is driven by mixed layer dynamics. Mixed layer depth and food chain efficiency correlate also in other productive regions.
    Description: China Sponsorship Council
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Keywords: ddc:577.7
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 38 (1934), S. 714-715 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK; Malden , USA : Blackwell Science Inc
    Restoration ecology 12 (2004), S. 0 
    ISSN: 1526-100X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Recent efforts to clear invasive plants from the fynbos of South Africa forces managers to think about how N2-fixing invasives have altered ecosystem processes and the implications of these changes for community development. This study investigated the changes in nitrogen (N) cycling regimes in fynbos with the invasion of Acacia saligna, the effects of clear-cutting acacia stands on soil microclimate and N cycling, and how altered N resources affected the growth of a weedy grass species. Litterfall, litter quality, soil nutrient pools, and ion exchange resin (IER)-available soil N were measured in uninvaded fynbos, intact acacia, and cleared acacia stands. In addition, a bioassay experiment was used to ascertain whether the changes in soil nutrient availability associated with acacia would enhance the success of a weedy grass species. Acacia plots had greater amounts of litterfall, which had higher concentrations of N. This led to larger quantities of organic matter, total N, and IER-available N in the soil. Clearing acacia stands caused changes in soil moisture and temperature, but did not result in differences in IER-available N. The alteration of N availability by acacias was shown to increase growth rates of the weedy grass Ehrharta calycina, suggesting that secondary invasions by nitrophilous weedy species may occur after clearing N2-fixing alien species in the fynbos. It is suggested that managers use controlled burns, the addition of mulch, and the addition of fynbos seed after clearing to lower the levels of available N in the soil and initiate the return of native vegetation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 58 (1936), S. 2654-2655 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 69 (2000), S. 183-215 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract Most prokaryotic signal-transduction systems and a few eukaryotic pathways use phosphotransfer schemes involving two conserved components, a histidine protein kinase and a response regulator protein. The histidine protein kinase, which is regulated by environmental stimuli, autophosphorylates at a histidine residue, creating a high-energy phosphoryl group that is subsequently transferred to an aspartate residue in the response regulator protein. Phosphorylation induces a conformational change in the regulatory domain that results in activation of an associated domain that effects the response. The basic scheme is highly adaptable, and numerous variations have provided optimization within specific signaling systems. The domains of two-component proteins are modular and can be integrated into proteins and pathways in a variety of ways, but the core structures and activities are maintained. Thus detailed analyses of a relatively small number of representative proteins provide a foundation for understanding this large family of signaling proteins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 112 (2000), S. 4910-4922 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: An approximate theory of femtosecond spectroscopy of nonadiabatically coupled electronic states is developed. Neglecting the commutators of vibrational Hamiltonians pertaining to different diabatic electronic states, the formulation represents a generalization of the semiclassical Franck–Condon approximation to the case of nonadiabatic dynamics. Explicit expressions for various time- and frequency-resolved spectra are derived which allow for a simple interpretation of femtosecond spectroscopy of vibronically coupled molecular systems. Employing multidimensional model problems describing (i) the nonadiabatic cis–trans isomerization of an electronic two-state system, and (ii) the S2→S1 internal conversion of pyrazine, exact reference data are compared to approximate calculations of transient absorbance and emission as well as time-resolved photoelectron spectra. In all cases considered, the approximation is shown to be appropriate for probe–pulse durations that are shorter than the period of the fastest relevant vibrational mode of the molecular system. Reducing the numerical costs of pump–probe simulations to the costs of a standard time-dependent wave-packet propagation, the approximate theory leads to substantial computational savings. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 116 (2002), S. 1085-1091 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A quantum-mechanical model description of a molecular photoswitch is developed. It takes into account (i) the electronic curve crossing arising from the cis-trans twisting of a double bond, resulting in an ultrafast internal-conversion process of the system and (ii) the coupling of the initially excited chromophore (the "system") to the remaining degrees of freedom (the "bath"), affecting a vibrational cooling of the hot photoproducts. The latter mechanism is responsible for the localization of the molecule in the cis and trans configuration, respectively, thus determining the quantum yield of the photoreaction. Following a discussion of the validity and the numerical implementation of the Redfield formulation employed, detailed numerical studies of the time-dependent dissipative photoisomerization dynamics are presented. While the short-time dynamics ((approximately-less-than)1 ps) is dominated by the coherent wave-packet motion of the system, the time evolution at larger times mainly reflects the interaction between system and bath. The quantum yield of the cis-trans forward reaction (Yc→t) and the trans-cis backward reaction (Yt→c) is shown to depend on the energy storage of the photoreaction and, in particular, on the form of the system–bath coupling. On the other hand, it is found that Yt→c=1−Yc→t, that is the population probabilities of the cis and trans configuration at long times do not depend on the initial preparation of the system. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 116 (2002), S. 69-78 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Based on a recently introduced mapping formulation [G. Stock and M. Thoss, Phys. Rev. Lett. 78, 578 (1997)], a classical phase-space description of vibronically coupled molecular systems is developed. In this formulation the problem of a classical treatment of discrete quantum degrees of freedom such as electronic states is bypassed by transforming the discrete quantum variables to continuous variables. Here the mapping formalism is applied to a spin-boson-type system with a single vibrational mode, e.g., representing the situation of a photo-induced electron transfer promoted by a high-frequency vibrational mode. Studying various Poincaré surfaces-of-section, a detailed phase-space analysis of the mapped two-state problem is given, showing that the model exhibits mixed classical dynamics. Furthermore, a number of periodic orbits (PO's) of the nonadiabatic system are identified. In direct extension of the usual picture of trajectories propagating on a single Born-Oppenheimer surface, these vibronic PO's describe nuclear motion on several coupled potential-energy surfaces. A quasiclassical approximation is derived that expresses time-dependent quantities of a vibronically coupled system in terms of the PO's of the system. As an example, it is demonstrated that vibronic PO's may be used to calculate the time-dependent population probability of the initially excited electronic state. For the system under consideration, already two PO's are sufficient to qualitatively describe the short-time evolution of the nonadiabatic process. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 114 (2001), S. 2001-2012 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The quantum-classical Liouville formulation gives a quantum-mechanical density-matrix description of the "quantum" particles of a problem (e.g., the electrons) and a classical phase-space-density description of the "classical" particles (e.g., the nuclei). In order to employ this formulation to describe multidimensional nonadiabatic processes in complex molecular systems, this work is concerned with an efficient Monte Carlo implementation of the quantum-classical Liouville equation. Although an exact stochastic realization of this equation is in principle available, in practice one has to cope with two major complications: (i) The representation of nonlocal phase-space operators in terms of local classical trajectories and (ii) the convergence of the Monte Carlo sampling which is cumbersome due to complex-valued trajectories with rapidly oscillating phases. Several strategies to cope with these problems are discussed, including various approximations to determine the momentum shift associated with a nonadiabatic transition, the on-the-fly generation of new trajectories at curve-crossings, and the localization of trajectories after irreversible electronic transitions. Employing several multidimensional model systems describing ultrafast photoinduced electron transfer and internal conversion, detailed numerical studies are performed which are compared to exact quantum calculations as well as to the "fewest-switches" surface-hopping method. In all cases under consideration, the Liouville calculations are in good agreement with the quantum reference. In particular, the approach is shown to provide a correct quantum-classical description of the electronic coherence. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...