ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • SOLAR PHYSICS  (511)
  • 1990-1994  (233)
  • 1985-1989  (278)
  • 1
    Publication Date: 2011-08-19
    Description: Radio range measurements of total solar plasma delay obtained during the solar conjunction of the Voyager 2 spacecraft in December 1988, which occurred near solar maximum activity in the 11 yr cycle are reported. The radio range measurements were generated by the Deep Space Network at two wavelengths on the downlink from the spacecraft: 3.6 and 13 cm. A direct measurement of the integrated electron density along the ray path between the earth stations and the spacecraft was obtained by differencing the range at the two wavelengths. Coronal electron density profiles have been derived during ingress and egress of the ray path, which approached the sun to within 5 solar radii. At 10 solar radii, the derived density profiles yield 34079 + or - 611/cu cm on ingress and 49688 + or - 983/cu cm on egress. These density levels are significantly higher than observed near previous solar maxima.
    Keywords: SOLAR PHYSICS
    Type: Astrophysical Journal, Part 2 - Letters (ISSN 0004-637X); 375; L57-L60
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: Farrugia et al (1993) have recently studied substorm activity driven by the passage of an interplanetary magnetic cloud during which the interplanetary magnetic field turned southward for approximately 18 hours. It was shown that both the epsilon and the VB(sub s) parameters varied slowly on the timescale of a substorm but changed considerably over the interval as a whole. The substorm occurrence rate did not reflect the variation in magnetospheric energy loading rate as measured by these parameters but, rather, remained roughly constant with a 50-min average period. Klimas et al. (1992) showed that the Faraday loop analog model of geomagnetic activity predicts this single unloading rate under various constant loading rates. However, various model parameters were adjusted to yield a 1-hour unloading period in agreement with the Bargatze et al. (1985) linear prediction filters and in approximate agreement with the Farrugia et al. (1993) results. It has since been found necessary to add a slow relaxation mechanism to the Faraday loop model to allow for its approach to a ground state during long periods of inactivity. It is proposed that the relaxation mechanism is provided by slow convection of magnetic flux out of the magnetotail to the dayside magnetosphere. In addition, a rudimentary representation of magnetotail-ionosphere coupling has been added to enable comparison of model output to measured AL. The present study is of the modified Faraday loop model response to solar wind input from the Bargatze et al. data set with comparison of its output to concurrent AL. This study has removed the degree of freedom in parameter choice that had earlier allowed adjustments toward the 1-hour unloading period and has, instead, yielded the 1-hour unloading period under various constant loading rates. It is demonstrated that the second peak of the bimodal Bargatze et al. linear prediction filters at approximately equal 1-hour lag and the approximately constant substorm recurrence rate observed by Farrugia et al. can be interpreted as both being due to the existence of a normal unloading recurrence period in the dynamics of the magnetosphere.
    Keywords: SOLAR PHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A8; p. 18,855-18,861
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-19
    Description: ISEE-3 Geotail observations are used to investigate the relationship between the interplanetary magnetic field, substorm activity, and the distant magnetotail. Magnetic field and plasma observations are used to present evidence for the existence of a quasi-permanent, curved reconnection neutral line in the distant tail. The distance to the neutral line varies from absolute value of X = 120 to 140 R/sub e near the center of the tail to beyond absolute value of X = 200 R/sub e at the flanks. Downstream of the neutral line the plasma sheet magnetic field is shown to be negative and directly proportional to negative B/sub z in the solar wind as observed by IMP-8. V/sub x in the distant plasma sheet is also found to be proportional to IMF B/sub z with southward IMF producing the highest anti-solar flow velocities. A global dayside reconnection efficiency of 20 + or - 5 percent is derived from the ISEE-3/IMP-8 magnetic field comparisons. Substorm activity, as measured by the AL index, produces enhanced negative B/sub z and tailward V/sub x in the distant plasma sheet in agreement with the basic predictions of the reconnection-based models of substorms. The rate of magnetic flux transfer out of the tail as a function of AL is found to be consistent with previous near-earth studies. Similarly, the mass and energy fluxes carried by plasma sheet flow down the tail are consistent with theoretical mass and energy budgets for an open magnetosphere. In summary, the ISEE-3 Geotail observations appear to provide good support for reconnection models of solar wind-magnetosphere coupling and substorm energy rates.
    Keywords: SOLAR PHYSICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: Isotopic composition of solar-flare (SF) Ne was determined in acid-etched pyroxene mineral separates from the Kapoeta meteorite, a brecciated meteorite known to contain implanted solar gases. The results yield the SF Ne-20/Ne-22 ratio of 11.6 +/-0.2, confirming previous determinations of this SF ratio in lunar and meteoritic samples. The same SF Ne composition was also obtained by applying an ordinate intercept technique to the same data set. The ordinate intercept technique was then applied to the Ar and He data. The results are SF Ar-36/Ar-38 = 4.9 +/-0.1 and SF He-4/He-3 = 3800 +/-200. These values are significantly different from the solar-wind (SW) Ar and He values. It is estimated that the concentration of the SF component in Kapoeta pyroxenes is about 20 percent that of the SW component, orders of magnitude higher than expected from SW and SF proton flux measurements.
    Keywords: SOLAR PHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 96; 19
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-01-25
    Description: From etched feldspar size-fractions of Kapoeta, we determine a significant excess of cosmogenic Ne-21 and Ar-38 over that produced by galactic cosmic rays. This excess component is attributed to early production by energetic solar protons and suggest that the energetic proton flux from the ancient Sun was several hundred times more intense than that of the contemporary Sun.
    Keywords: SOLAR PHYSICS
    Type: Lunar and Planetary Inst., Twenty-Fourth Lunar and Planetary Science Conference. Part 3: N-Z; p 1193-1194
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-28
    Description: Depth profiles for Ne-21, Ne-22, and Ar-38 isotopes from oriented lunar rock 61016 are reported. Concentration profiles of cosmogenic GCR+SCR (Galactic cosmic ray and solar cosmic ray-produced) isotopes are determined, quantitatively resolving neon and argon produced by energetic solar flares from that produced by Galactic cosmic rays. The SCR component is resolved from the GCR component as a function of shielding, and excellent agreement is found between experimental SCR production profiles for the isotopes and theoretically calculated values. A characteristic SW He-4/He-3 ratio of 3450 +/- 81, representing energies down to as few keV/amu. In slightly deeper samples an SRF He-4/He-3 ratio of 3450 +/- 725 is found for He particles with E larger than about 1 MeV/amu. These results indicate that the isotopic composition of SF He, averaged over the long term, is energy-dependent. An implanted Ne-20/Ne-22 ratio of 12.4 is measured in unetched samples, representing E greater than 1 MeV/amu, and a ratio of 11.6 is inferred in the samples, representing E larger than about 5 MeV/amu.
    Keywords: SOLAR PHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 98; A5; p. 7827-7835.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: ISEE-3 Geotail observations are used to investigate the relationship between the interplanetary magnetic field, substorm activity, and the distant magnetotail. Magnetic field and plasma observations are used to present evidence for the existence of a quasi-permanent, curved reconnection neutral line in the distant tail. The distance to the neutral line varies from absolute value of X = 120 to 140 R/sub e near the center of the tail to beyond absolute value of X = 200 R/sub e at the flanks. Downstream of the neutral line the plasma sheet magnetic field is shown to be negative and directly proportional to negative B/sub z in the solar wind as observed by IMP-8. V/sub x in the distant plasma sheet is also found to be proportional to IMF B/sub z with southward IMF producing the highest anti-solar flow velocities. A global dayside reconnection efficiency of 20 +- 5% is derived from the ISEE-3/IMP-8 magnetic field comparisons. Substorm activity, as measured by the AL index, produces enhanced negative B/sub z and tailward V/sub x in the distant plasma sheet in agreement with the basic predictions of the reconnection-based models of substorms. The rate of magnetic flux transfer out of the tail as a function of AL is found to be consistent with previous near-Earth studies. Similarly, the mass and energy fluxes carried by plasma sheet flow down the tail are consistent with theoretical mass and energy budgets for an open magnetosphere. In summary, the ISEE-3 Geotail observations appear to provide good support for reconnection models of solar wind-magnetosphere coupling and substorm energy rates.
    Keywords: SOLAR PHYSICS
    Type: DE86-002386 , LA-UR-85-3525 , CONF-850277-5 , NAS 1.15:88764 , NASA-TM-88764 , Chapman Conference on Solar Wind-magnetosphere Energy Coupling; Feb 12, 1985; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The detection of high energy photon emission from a long-duration solar gamma-ray flare on June 11, 1991 is reported. Gamma rays were detected up to energies above 1 GeV. The solar origin of this emission is assured by the time profile of the gamma-ray count rate and by time-resolved sky maps, which show a clear maximum at the position of the sun. There are indications for a spectral evolution with time, such that the emission below 100 MeV fades away earlier than the 100-300 MeV radiation, roughly on the time scale of the fast component. The spectrum of the flare can be well fitted with a composite of a proton generated pi exp 0 spectrum and an electron bremsstrahlung component. The latter can be identified with the fast decaying component of the lightcurve.
    Keywords: SOLAR PHYSICS
    Type: Astronomy and Astrophysics Supplement Series (ISSN 0365-0138); 97; 1; p. 349-353.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-12
    Description: Calculations of the long-term dynamical evolution of a solar coronal magnetic field arcade which is subjected to shearing photospheric flows are presented. The evolution is obtained by numerical solution of a subset of the resistive magnetohydrodynamic equations. For a simplified model of the bipolar magnetic field observed in the solar corona, it is found that photospheric flow produces a slow evolution of the magnetic field, with a buildup of magnetic energy. For certain photospheric shear profiles, the field configuration produced is linearly unstable to an ideal magnetohydrodynamic mode when the shear exceeds a critical value. The nonlinear evolution of this instability shows the spontaneous formation of current sheets. Reconnection of the magnetic field produces a rapid release of magnetic energy. The major fraction of the energy is dissipated resistively, while a small fraction is converted into kinetic energy of an ejected plasmoid. The relevance of these results to two-ribbon flares is discussed.
    Keywords: SOLAR PHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 328; 830-847
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-24
    Description: The Radio and Plasma Wave Science (RPWS) experiment being built for the Cassini spacecraft will study a wide range of plasma and radio wave phenomena in the magnetosphere of Saturn and will also make valuable measurements during the cruise phase and at other encounters. A feature of data from wave receivers is the capability of producing vastly more data than the spacecraft telemetry link is capable of transmitting back to the Earth. Thus, techniques of on-board data compression and data reduction are important. The RPWS instrument has one processor dedicated to data compression tasks.
    Keywords: SOLAR PHYSICS
    Type: British Interplanetary Society, Journal (ISSN 0007-094X); 46; 3; p. 115-120.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...