ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-10-21
    Description: These data files and MATLAB scripts reproduce the model data and figures as published in Bramante et al. (in prep) Modeling the impacts of a changing climate on cross-shore sediment transport: Kwajalein Atoll, Marshall Islands.
    Description: Atoll reef islands primarily consist of unconsolidated sediment, and their ocean-facing shorelines are maintained by sediment produced and transported across their reefs. Changes in incident waves can alter cross-shore sediment exchange and thus affect the sediment budget and morphology of atoll reef islands. Here we investigate the influence of sea-level rise and projected wave climate change on wave characteristics and cross-shore sediment transport across an atoll reef at Kwajalein Island, Republic of the Marshall Islands. Using a phase-resolving model, we quantify the influence on sediment transport of quantities not well-captured by wave-averaged models, namely wave asymmetry and skewness and flow acceleration. Model results suggest that for current reef geometry, sea level, and wave climate, potential bedload transport is directed onshore, decreases from the fore reef to the beach, and is sensitive to the influence of flow acceleration. We find that a projected 12% decrease in annual wave energy by 2100 CE has negligible influence on reef flat hydrodynamics. However, 0.5-2.0 m of sea-level rise increases wave heights, skewness, and shear stress on the reef flat, and decreases wave skewness and shear stress on the fore reef. These hydrodynamic changes decrease potential sediment inputs onshore from the fore reef where coral production is greatest, but increase potential cross-reef sediment transport from the outer reef flat to the beach. Assuming sediment production on the fore reef remains constant or decreases due to increasing ocean temperatures and acidification, these processes have the potential to decrease net sediment delivery to atoll islands, causing erosion.
    Description: This project was supported by the Strategic Environmental Research and Development Program through awards SERDP RC-2334 and RC-2336.
    Keywords: Climate change ; Sediment transport ; Wave model ; Fringing reef
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Earth Surface 125 (2020): e2019JF005446, doi: 10.1029/2019JF005446.
    Description: Atoll reef islands primarily consist of unconsolidated sediment, and their ocean‐facing shorelines are maintained by sediment produced and transported across their reefs. Changes in incident waves can alter cross‐shore sediment exchange and, thus, affect the sediment budget and morphology of atoll reef islands. Here we investigate the influence of sea level rise and projected wave climate change on wave characteristics and cross‐shore sediment transport across an atoll reef at Kwajalein Island, Republic of the Marshall Islands. Using a phase‐resolving model, we quantify the influence on sediment transport of quantities not well captured by wave‐averaged models, namely, wave asymmetry and skewness and flow acceleration. Model results suggest that for current reef geometry, sea level, and wave climate, potential bedload transport is directed onshore, decreases from the fore reef to the beach, and is sensitive to the influence of flow acceleration. We find that a projected 12% decrease in annual wave energy by 2100 CE has negligible influence on reef flat hydrodynamics. However, 0.5–2.0 m of sea level rise increases wave heights, skewness, and shear stress on the reef flat and decreases wave skewness and shear stress on the fore reef. These hydrodynamic changes decrease potential sediment inputs onshore from the fore reef where coral production is greatest but increase potential cross‐reef sediment transport from the outer reef flat to the beach. Assuming sediment production on the fore reef remains constant or decreases due to increasing ocean temperatures and acidification, these processes have the potential to decrease net sediment delivery to atoll islands, causing erosion.
    Description: This study was supported by the Strategic Environmental Research and Development Program through awards SERDP: RC‐2334, and RC‐2336. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
    Description: 2021-03-25
    Keywords: Coral atolls ; Fringing reefs ; Sediment transport ; Wave model ; Wave climate ; Sea level rise
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-10-31
    Description: Dataset: Series 3A: cell abundance
    Description: The experiments were designed to test the combined effects of three CO2 concentrations, four temperatures, and three light intensities on growth of the diatom T. pseudonana CCMP1014 in a multifactorial design. This dataset contains measurements of cell abundances measured by forward scatter. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/771421
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1538602
    Keywords: Phytoplankton ; Diatoms ; Ocean acidification ; Multiple stressors ; Photosynthesis ; Biogenic silica
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-10-31
    Description: Dataset: Series 3A: Nutrients
    Description: The experiments were designed to test the combined effects of three CO2 concentrations, four temperatures, and three light intensities on growth and photophysiology of the diatom T. pseudonana CCMP1014 in a multifactorial design. This dataset contains measurements of nutrients (phosphate, silicate, and nitrate plus nitrite) made over the course of the experiments. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/771370
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1538602
    Keywords: Phytoplankton ; Diatoms ; Ocean acidification ; Multiple stressors ; Photosynthesis ; Biogenic silica
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-10-31
    Description: Dataset: Series 3A: pH
    Description: The experiments were designed to test the combined effects of three CO2 concentrations, four temperatures, and three light intensities on growth and photophysiology of the diatom T. pseudonana CCMP1014 in a multifactorial design. This dataset contains measurements of pH made over the course of the experiments. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/771304
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1538602
    Keywords: Phytoplankton ; Diatoms ; Ocean acidification ; Multiple stressors ; Photosynthesis ; Biogenic silica
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-10-31
    Description: Dataset: Series 3A: DIC
    Description: The experiments were designed to test the combined effects of three CO2 concentrations, four temperatures, and three light intensities on growth and photophysiology of the diatom T. pseudonana CCMP1014 in a multifactorial design. This dataset contains measurements of Dissolved Inorganic Carbon (DIC) made over the course of the experiments. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/771333
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1538602
    Keywords: Phytoplankton ; Diatoms ; Ocean acidification ; Multiple stressors ; Photosynthesis ; Biogenic silica
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-10-31
    Description: Dataset: Series 3A: cell size
    Description: The experiments were designed to test the combined effects of three CO2 concentrations, four temperatures, and three light intensities on growth of the diatom T. pseudonana CCMP1014 in a multifactorial design. This dataset contains measurements of cell size expressed as forward scatter as well as in equivalent spherical diameter (ESD) in microns. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/771448
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1538602
    Keywords: Phytoplankton ; Diatoms ; Ocean acidification ; Multiple stressors ; Photosynthesis ; Biogenic silica
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-10-31
    Description: Dataset: Series 3A: POC, PON, Chl a
    Description: The experiments were designed to test the combined effects of CO2, temperatures, and light on growth and photophysiology of the diatom T. pseudonana CCMP1014 in a multifactorial design. This dataset contains measurements of extracted chlorophyll, particulate organic carbon (POC), and particulate organic nitrogen (PON) made over the course of the experiments. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/771594
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1538602
    Keywords: Phytoplankton ; Diatoms ; Ocean acidification ; Multiple stressors ; Photosynthesis ; Biogenic silica
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-10-31
    Description: Dataset: Series 3A: photophysiology
    Description: The experiments were designed to test the combined effects of CO2, temperatures, and light on the growth of the diatom T. pseudonana CCMP1014 in a multifactorial design. This dataset contains measurements of photophysiology using the Light curve (LC3) protocol of the Aquapen-C AP-C 100 fluorometer. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/771461
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1538602
    Keywords: Phytoplankton ; Diatoms ; Ocean acidification ; Multiple stressors ; Photosynthesis ; Biogenic silica
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-10-27
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Sherwood, C. R., van Dongeren, A., Doyle, J., Hegermiller, C. A., Hsu, T.-J., Kalra, T. S., Olabarrieta, M., Penko, A. M., Rafati, Y., Roelvink, D., van der Lugt, M., Veeramony, J., & Warner, J. C. Modeling the morphodynamics of coastal responses to extreme events: what shape are we in? Annual Review of Marine Science, 14, (2022): 457–492, https://doi.org/10.1146/annurev-marine-032221-090215.
    Description: This review focuses on recent advances in process-based numerical models of the impact of extreme storms on sandy coasts. Driven by larger-scale models of meteorology and hydrodynamics, these models simulate morphodynamics across the Sallenger storm-impact scale, including swash,collision, overwash, and inundation. Models are becoming both wider (as more processes are added) and deeper (as detailed physics replaces earlier parameterizations). Algorithms for wave-induced flows and sediment transport under shoaling waves are among the recent developments. Community and open-source models have become the norm. Observations of initial conditions (topography, land cover, and sediment characteristics) have become more detailed, and improvements in tropical cyclone and wave models provide forcing (winds, waves, surge, and upland flow) that is better resolved and more accurate, yielding commensurate improvements in model skill. We foresee that future storm-impact models will increasingly resolve individual waves, apply data assimilation, and be used in ensemble modeling modes to predict uncertainties.
    Description: All authors except D.R. were partially supported by the IFMSIP project, funded by US Office of Naval Research grant PE 0601153N under contracts N00014-17-1-2459 (Deltares), N00014-18-1-2785 (University of Delaware), N0001419WX00733 (US Naval Research Laboratory, Monterey), N0001418WX01447 (US Naval Research Laboratory, Stennis Space Center), and N0001418IP00016 (US Geological Survey). C.R.S., C.A.H., T.S.K., and J.C.W. were supported by the US Geological Survey Coastal/Marine Hazards and Resources Program. A.v.D. and M.v.d.L. were supported by the Deltares Strategic Research project Quantifying Flood Hazards and Impacts. M.O. acknowledges support from National Science Foundation project OCE-1554892.
    Keywords: Coastal morphodynamics ; Extreme storms ; Coastal modeling ; Sandy coasts ; Waves ; Sediment transport
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...