ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (3)
  • 1995-1999
  • 2024  (3)
Collection
Publisher
Years
  • 2020-2024  (3)
  • 1995-1999
Year
  • 1
    Publication Date: 2024-01-26
    Description: We used two and a half years long SO2 flux record, obtained using permanent ultraviolet cameras, to characterize changes in degassing dynamics at Mt. Etna volcano from summer 2014 to the end of 2016. Volcanic activity at Mt. Etna was characterized by persistent open-vent degassing periodically interrupted by intense paroxysmal lava fountaining events (in August 2014, December 2015, and May 2016). Results revealed systematic SO2 emission patterns prior, during, and after Etna’s paroxysmal phases, allowing us to identify thresholds between pre-syn-and post-eruptive degassing regimes. The SO2 flux typically peaked during a lava fountain: in the 18 May 2016 example, the averaged SO2 degassing rate was ~158 kg/s, the peak emission was ~260 kg/s, and the total released SO2 mass was ~1700 tons (in 3h). Paroxysmal explosive activity at NSE crater on 11-15 August 2014 was also associated with intense syneruptive SO2 degassing (at 30-40 kg/s levels on a daily average), and was preceded by onset in degassing activity at the same crater 4 days before. During paroxysmal activity on 3-5 December 2015, the SO2 fluxes peaked at 54-103 kg/s from VOR crater, and was preceded by a sizable increase from 10 kg/s (end of November) up to 45.5 kg/s, two days before. The May 16-25 2016 paroxysmal activity was characterized by intense degassing ~2 times higher than the 2016 average (~18 kg/s) and preceded by mild but detectable SO2 flux increases more than one month before its onset. Taken together, our observations, when combined with independent geophysical (thermal and seismic) evidence, allow us to fully characterize the Etna’s degassing dynamics and contribute to our understanding of its shallow plumbing system.
    Description: Published
    Description: Catania
    Description: OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
    Keywords: SO2 ; Mt. Etna volcano ; permanent ultraviolet cameras
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-01-25
    Description: The persistent open-vent degassing of Mt. Etna is often punctuated by monthslong paroxysmal sequences characterized by episodes of violent Strombolian to lava fountaining activity. Understanding these gas-fueled transitions from quiescence to eruption requires routine measurement of gas fluxes. Here, we report SO2 flux measurements, obtained from a permanent UV camera system, collected over a two-year-long period spanning two paroxysmal sequences of Etna’s New South East Crater (NSEC) in December 2020/April 2021 and May/ October 2021. In both cases, SO2 flux increased from ≤ 3250 Mg/day during “ordinary” activity to ≥ 4200 Mg/day. We interpret these distinct SO2 degassing regimes in light of seismic and thermal observations and drawing on numerical simulations of sulfur degassing constrained by parental melt sulfur contents in Etna’s hawaiites. We find that initiation of a paroxysmal sequence results from an approximate doubling of the time-averaged rate of magma supply (and degassing) above the sulfur exsolution level (~150 MPa pressure), to 〉4m3/s. This corroborates recent models that argue for the triggering of paroxysmal sequences by escalating supply of volatile-rich magma to a reservoir ~3–4 km below the summit region. The non-stationary nature of magma flow and volcanic degassing we identify highlights the need for sustained surveillance to characterize long-term atmospheric budgets of volcanic volatiles
    Description: Published
    Description: 1115111
    Description: OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
    Description: JCR Journal
    Keywords: Etna, ; volcanic gases ; SO2 flux ; paroxysms ; UV Camera ; basaltic explosive volcanism ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-05-23
    Description: Lahars, landslides and debris flows are rapid natural phenomena that can heavily impact on and modify the environment, not only that from which they are triggered but also the one in which they propagate or leave deposits. In particular, lahars can reach significant runout distances from source areas (e.g., several km) and this can mainly depend, among other factors, on the morphology experienced by such propagation. There are cases in the recent history of natural occurrences in which lahars impacted catastrophically on rural and urban settings, such as for example at Nevado del Ruiz volcano (Colombia) in 1985 causing the death of thousands of people living around there. A more recent event occurred on November 26, 2022 at Ischia island (Italy), which is an active volcano particularly subjected to the recurrence of these phenomena. In this case, the emplacement of some lahars caused the death of a few tens of people and the damaging of tens of building, besides the direct impact on local agriculture and tourism. In the nearby Neapolitan volcanic area, several other lahar events occurred in the historical past, not only during but also after or well after explosive eruptions, as the evidence that these phenomena are still to be considered as complex and often unpredictable extreme natural events, also exacerbated by the climate changes, but also that they have some recurrence that cannot be neglected. Such kind of recurrence is mainly related to the local weather, which can even affect the intrinsic behavior of the flows that detach from the source areas and invade the territory. On the other hand, this is not a strictly statistical issue, as there are instrumental measurements that support the fact that heavy rains can exacerbate a landscape already prone to sliding, avalanching, and other catastrophic phenomena. For this, the November 26, 2022 Ischia case study was chosen with the goal of reconstructing the physical features that led to the lahar generation and invasion, which is something that might occur in the future but that should be experienced with a dedicated scientific and territorial consciousness. What was done is an integration of multidisciplinary approaches, corroborated by data from the INGV-OV monitoring network installed on the volcano, capable of detecting the otherwise lost flow timing and dynamical behavior. In particular, the seismic evidence that accompanied the Ischia lahar events, along with the consideration of some lithological features leading to an estimation of flow velocity and dynamic pressure, allow to discriminate multiple lahar pulses over the early morning of November 26, 2022. The main findings of this contribution are that the potential of the Ischia lahars had a sort of recharge timespan which depended on the local weather and lithological features, while the threshold of the lahar trigger depended on the hydrogeological conditions. The seismic reconstruction of the entire event allowed to quantify the first of these two critical issues at Ischia island.
    Description: Published
    Description: Vienna
    Description: OSV1: Verso la previsione dei fenomeni vulcanici pericolosi
    Keywords: Ischia island, landslide
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...