ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGU (American Geophysical Union)  (5)
  • American Association of Petroleum Geologists
  • American Meteorological Society
  • Springer
  • 2020-2024  (8)
  • 1920-1924
  • 2022  (8)
  • 1
    facet.materialart.
    Unknown
    Springer Nature | Springer
    Publication Date: 2024-04-05
    Description: This open access book… There is significant interest in the Philosophy of Science community to understand the role that "effective theories" have in the work of forefront science. The ideas of effective theories have been implicit in science for a long time, but have only been articulated well in the last few decades. Since Wilson's renormalization group revolution in the early 1970's, the science community has come to more fully understand its power, and by the mid-1990's it had gained its apotheosis. It is still one of the most powerful concepts in science, which has direct impact in how one thinks about and formulates theories of nature. It is this power that this Brief sets out to emphasize through historical analysis and current examples. This is an open access book.
    Keywords: Effectiv field theory ; Effective action ; Effective theories ; Naturalness and fine-tuning in theoretical physics ; Phenomenology ; Renormalization group ; Symmetries in Physics ; thema EDItEUR::P Mathematics and Science::PH Physics::PHU Mathematical physics ; thema EDItEUR::P Mathematics and Science::PD Science: general issues::PDX History of science ; thema EDItEUR::P Mathematics and Science::PD Science: general issues::PDA Philosophy of science
    Language: English
    Format: image/jpeg
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Key Points: - High resolution carbonate chemistry, δ13C-DIC, and particle flux measurements in the NE Pacific sheds light on the upper oceancalcium carbonate and alkalinity cycles. - Based on this sampling campaign, there isevidence for substantial CaCO3 dissolution in the mesopelagic zone above the saturation horizon. - Dissolution experiments, observations, and modeling suggest that shallow CaCO3 dissolutionis coupled to the consumption of organic carbon, through a combination of zooplankton grazing and oxic respiration within particle microenvironments. The cycling of biologically produced calcium carbonate (CaCO3) in the ocean is a fundamental component of the global carbon cycle. Here, we present experimental determinations of in situcoccolith and foraminiferal calcite dissolution rates.We combine these rates with solid phase fluxes,dissolved tracers, and historical data to constrain the alkalinity cycle in the shallow North Pacific Ocean.The in situ dissolution rates of coccolithophores demonstrate a nonlinear dependence on saturation state. Dissolution ratesof all three major calcifying groups (coccoliths, foraminifera, and aragonitic pteropods)aretoo slow to explainthe patternsofboth CaCO3sinking fluxand alkalinity regenerationin the NorthPacific.Usinga combination of dissolved and solid-phase tracers, we document a significant dissolution signal in seawater supersaturated for calcite. Driving CaCO3dissolutionwith acombination of ambient saturation state and oxygen consumption simultaneously explainssolid-phase CaCO3flux profiles and patterns of alkalinity regeneration across the entire N. Pacific basin. Wedo not need to invokethe presence ofcarbonate phases with higher solubilities.Instead, biomineralization and metabolic processesintimately associatethe acid (CO2) and the base (CaCO3) in the same particles,driving the coupled shallow remineralization of organic carbonand CaCO3.The linkage of these processes likely occurs through a combination of dissolution due to zooplankton grazing and microbial aerobic respiration withindegrading particle aggregates.The coupling of these cyclesacts as a major filter on the export of both organic and inorganic carbon to the deep ocean.
    Type: Article , PeerReviewed
    Format: other
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Biological invasions are one of the top drivers of the ongoing biodiversity crisis. An underestimated consequence of invasions is the enormity of their economic impacts. Knowledge gaps regarding economic costs produced by invasive alien species (IAS) are pervasive, particularly for emerging economies such as India—the fastest growing economy worldwide. To investigate, highlight and bridge this gap, we synthesised data on the economic costs of IAS in India. Specifically, we examine how IAS costs are distributed spatially, environmentally, sectorally, taxonomically, temporally, and across introduction pathways; and discuss how Indian IAS costs vary with socioeconomic indicators. We found that IAS have cost the Indian economy between at least US$ 127.3 billion to 182.6 billion (Indian Rupees ₹ 8.3 trillion to 11.9 trillion) over 1960–2020, and these costs have increased with time. Despite these massive recorded costs, most were not assigned to specific regions, environments, sectors, cost types and causal IAS, and these knowledge gaps are more pronounced in India than in the rest of the world. When costs were specifically assigned, maximum costs were incurred in West, South and North India, by invasive alien insects in semi-aquatic ecosystems; they were incurred mainly by the public and social welfare sector, and were associated with damages and losses rather than management expenses. Our findings indicate that the reported economic costs grossly underestimate the actual costs, especially considering the expected costs given India’s population size, gross domestic product and high numbers of IAS without reported costs. This cost analysis improves our knowledge of the negative economic impacts of biological invasions in India and the burden they can represent for its development. We hope this study motivates policymakers to address socio-ecological issues in India and launch a national biological invasion research programme, especially since economic growth will be accompanied by greater impacts of global change.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: New U‒Pb (LA-ICP-MS) geochronological data have been obtained on accessory zircons from granodiorites and on detrital zircons from stream-sediment samples from the Shipunsky massif in the Eastern Kamchatka region. The age of accessory zircons from amphibole–biotite granodiorites has been estimated at 49–44 Ma. Detrital zircons have the Late Paleocene–Early Eocene age from ~57 to ~49 Ma. Based on the geological and geochronological data, the massif was formed in two stages: a gabbroid intrusion (56‒51 Ma) and the quartz diorite-granodiorite intrusion (49‒44 Ma). In terms of the petrographic and geochemical characteristics of the Upper Cretaceous–Eocene volcanic rocks in the Shipunsky Peninsula and granitoids in the Shipunsky massif, they were formed in the suprasubduction setting. The Shipunsky granitoids belong to the I-type granites. The Shipunsky massif was formed as a part of the Kronotsky intraoceanic paleoarc during the Paleocene–Eocene in two stages. The southern segment of the Kronotsky paleoarc collided with the Kamchatka continental margin and the deformed rocks of this massif were brought to the surface.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Natural forcing from solar and volcanic activity contributes significantly to climate variability. The post-eruption cooling of strong volcanic eruptions was hypothesized to have led to millennial-scale variability during Glacials. Cooling induced by volcanic eruption is potentially weaker in the warmer climate. The underlying question is whether the climatic response to natural forcing is state-dependent. Here, we quantify the response to natural forcing under Last Glacial and Pre-Industrial conditions in an ensemble of climate model simulations. We evaluate internal and forced variability on annual to multicentennial scales. The global temperature response reveals no state dependency. Small local differences result mainly from state-dependent sea ice changes. Variability in forced simulations matches paleoclimate reconstructions significantly better than in unforced scenarios. Considering natural forcing is therefore important for model-data comparison and future projections. Key Points We present Glacial/Interglacial climate simulations and quantify effects of time-varying volcanic and solar forcing on climate variability The mean global and local response to these forcings is similar in Glacial and Interglacial climate, suggesting low state dependency In both climate states, modeled temperature variance agrees better with palaeoclimate data when volcanic and solar forcing is included
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: Multiyear turbulence measurements from oceanographic moorings in equatorial Atlantic and Pacific cold tongues reveal similarities in deep cycle turbulence (DCT) beneath the mixed layer (ML) and above the Equatorial Undercurrent (EUC) core. Diurnal composites of turbulence kinetic energy dissipation rate, ϵ, clearly show the diurnal cycles of turbulence beneath the ML in both cold tongues. Despite differences in surface forcing, EUC strength and core depth DCT occurs, and is consistent in amplitude and timing, at all three sites. Time-mean values of ϵ at 30 m depth are nearly identical at all three sites. Variations of averaged values of ϵ in the deep cycle layer below 30 m range to a factor of 10 between sites. A proposed scaling in depth that isolates the deep cycle layers and of ϵ by the product of wind stress and current shear collapses vertical profiles at all sites to within a factor of 2.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: The intraplate Hawaiian-Emperor Seamount Chain has long been considered a hotspot track generated by the motion of the Pacific plate over a deep mantle plume, and an ideal feature therefore for studies of volcanic structure, magma supply, plume-crust interaction, flexural loading, and upper mantle rheology. Despite their importance as a major component of the chain, the Emperor Seamounts have been relatively little studied. In this paper, we present the results of an active-source wide-angle reflection and refraction experiment conducted along an ocean-bottom-seismograph (OBS) line oriented perpendicular to the seamount chain, crossing Jimmu guyot. The tomographic P wave velocity model, using ∼20,000 travel times from 26 OBSs, suggests that there is a high-velocity (〉6.0 km/s) intrusive core within the edifice, and the extrusive-to-intrusive ratio is estimated to be ∼2.5, indicating that Jimmu was built mainly by extrusive processes. The total volume for magmatic material above the top of the oceanic crust is ∼5.3 × 104 km3, and the related volume flux is ∼0.96 m3/s during the formation of Jimmu. Under volcanic loading, the ∼5.3-km-thick oceanic crust is depressed by ∼3.8 km over a broad region. Using the standard relationships between Vp and density, the velocity model is verified by gravity modeling, and plate flexure modeling indicates an effective elastic thickness (Te) of ∼14 km. Finally, we find no evidence for large-scale magmatic underplating beneath the pre-existing crust.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: Plate divergence along mid-ocean ridges is accommodated through faulting and magmatic accretion, and, at overlapping spreading centers (OSC), is distributed across two curvilinear overlapping ridge axes. One-meter resolution bathymetry acquired by autonomous underwater vehicles, combined with distribution and ages of lava flows, is used to: (1) analyze the spatial and temporal distribution of flows, faults, and fissures in the OSC between the distal south rift zone of Axial Seamount and the Vance Segment, (2) locate spreading axes, (3) calculate extension, and (4) determine the proportion of extension accommodated at the surface by faults and fissures versus volcanic extrusion over a period of ∼1300-1450 years. Our study reveals that in the recent history of the ridges, extension over a distance of 14 km across the Axial/Vance OSC was asymmetric in proportion and style: faults and fissures across 1-2 km of the Vance axial valley accommodated ∼3/4 of the spreading, whereas dike-fed eruptions contributed ∼1/4 of the extension and occurred across 4 km of the south rift of Axial Seamount.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...