ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-02-07
    Description: When organic matter from thawed permafrost is released, the sources and sinks of greenhouse gases (GHGs), like carbon dioxide (CO2) and methane (CH4) in Arctic rivers will be influenced in the future. However, the temporal variation, environmental controls, and magnitude of the Arctic riverine GHGs are largely unknown. We measured in situ high temporal resolution concentrations of CO2, CH4, and oxygen (O2) in the Ambolikha River in northeast Siberia between late June and early August 2019. During this period, the largely supersaturated riverine CO2 and CH4 concentrations decreased steadily by 90% and 78%, respectively, while the O2 concentrations increased by 22% and were driven by the decreasing water temperature. Estimated gas fluxes indicate that during late June 2019, significant emissions of CO2 and CH4 were sustained, possibly by external terrestrial sources during flooding, or due to lateral exchange with gas-rich downstream-flowing water. In July and early August, the river reversed its flow constantly and limited the water exchange at the site. The composition of dissolved organic matter and microbial communities analyzed in discrete samples also revealed a temporal shift. Furthermore, the cumulative total riverine CO2 emissions (36.8 gC-CO2 m−2) were nearly five times lower than the CO2 uptake at the adjacent floodplain. Emissions of riverine CH4 (0.21 gC-CH4 m−2) were 16 times lower than the floodplain CH4 emissions. Our study revealed that the hydraulic connectivity with the land in the late freshet, and reversing flow directions in Arctic streams in summer, regulate riverine carbon replenishment and emissions.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Abundant volcanic activity occurs in the back-arc region of the northern Tofua island arc where the Northeast Lau Spreading Centre (NELSC) propagates southwards into older crust causing the formation of numerous seamounts at the propagating rift tip. An off-axis volcanic diagonal ridge (DR) occurs at the eastern flank of the NELSC, linking the large rear-arc volcano Niuatahi with the NELSC. New geochemical data from the NELSC, the southern propagator seamounts, and DR reveal that the NELSC lavas are tholeiitic basalts whereas the rear-arc volcanoes typically erupt lavas with boninitic composition. The sharp geochemical boundary probably reflects the viscosity contrast between off-axis hydrous harzburgitic mantle and dry fertile mantle beneath the NELSC. The new data do not indicate an inflow of Samoa plume mantle into the NELSC, confirming previously published He isotope data. The NELSC magmas form by mixing of an enriched and a depleted Indian Ocean-type upper mantle end-member implying a highly heterogeneous upper mantle composition in this area. Most NELSC lavas are little affected by a slab component implying that melting is adiabatic beneath the spreading center. The DR lavas show the influence of a component from the subducted Louisville Seamount Chain, which was previously thought to be restricted to the nearby arc volcanoes Niuatoputapu and Tafahi. This signature is rarely detected along the NELSC implying little mixing of melts from the low-viscosity hydrous portion of the mantle wedge beneath the rear-arc volcanoes into the melting region of the dry mantle beneath the NELSC.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: other
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-09-27
    Description: Body size is a decisive functional trait in many organisms, especially for phytoplankton, which span several orders of magnitude in cell volume. Therefore, the analysis of size as a functional trait driving species’ performance has received wide attention in aquatic ecology, amended in recent decades by studies documenting changes in phytoplankton size in response to abiotic or biotic factors in the environment. We performed a systematic literature review to provide an overarching, partially quantitative synthesis of cell size as a driver and sentinel of phytoplankton ecology. We found consistent and significant allometric relationships between cell sizes and the functional performance of phytoplankton species (cellular rates of carbon fixation, respiration and exudation as well as resource affinities, uptake and content). Size scaling became weaker, absent or even negative when addressing C- or volume-specific rates or growth. C-specific photosynthesis and population growth rate peaked at intermediate cell sizes around 100 µm3. Additionally, we found a rich literature on sizes changing in response to warming, nutrients and pollutants. Whereas small cells tended to dominate under oligotrophic and warm conditions, there are a few notable exceptions, which indicates that other environmental or biotic constraints alter this general trend. Grazing seems a likely explanation, which we reviewed to understand both how size affects edibility and how size structure changes in response to grazing. Cell size also predisposes the strength and outcome of competitive interactions between algal species. Finally, we address size in a community context, where size-abundance scaling describes community composition and thereby the biodiversity in phytoplankton assemblages. We conclude that (a) size is a highly predictive trait for phytoplankton metabolism at the cellular scale, with less strong and nonlinear implications for growth and specific metabolism and (b) size structure is a highly suitable sentinel of phytoplankton responses to changing environments. A free Plain Language Summary can be found within the Supporting Information of this article.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-09-22
    Description: Primary consumers in aquatic ecosystems are frequently limited by the quality of their food, often expressed as phytoplankton elemental and biochemical composition. However, the effects of these food quality indicators vary across studies, and we lack an integrated understanding of how elemental (e.g. nitrogen, phosphorus) and biochemical (e.g. fatty acid, sterol) limitations interactively influence aquatic food webs. Here, we present the results of a meta-analysis using 〉100 experimental studies, confirming that limitation by N, P, fatty acids, and sterols all have significant negative effects on zooplankton performance. However, effects varied by grazer response (growth vs. reproduction), specific manipulation, and across taxa. While P limitation had greater effects on zooplankton growth than fatty acids overall, P and fatty acid limitation had equal effects on reproduction. Furthermore, we show that: nutrient co-limitation in zooplankton is strong; effects of essential fatty acid limitation depend on P availability; indirect effects induced by P limitation exceed direct effects of mineral P limitation; and effects of nutrient amendments using laboratory phytoplankton isolates exceed those using natural field communities. Our meta-analysis reconciles contrasting views about the role of various food quality indicators, and their interactions, for zooplankton performance, and provides a mechanistic understanding of trophic transfer in aquatic environments.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-09-22
    Description: Ecological stability refers to a range of concepts used to quantify how species and environments change over time and in response to disturbances. Most empirically tractable ecological stability metrics assume that systems have simple dynamics and static equilibria. However, ecological systems are typically complex and often lack static equilibria (e.g., predator–prey oscillations, transient dynamics, chaos). Failing to account for these factors can lead to biased estimates of stability, in particular, by conflating effects of observation error, process noise, and underlying deterministic dynamics. To distinguish among these processes, we combine three existing approaches: state space models; delay embedding methods; and particle filtering. Jointly, these provide something akin to a deterministically “detrended” version of the coefficient of variation, separately tracking variability due to deterministic dynamics versus stochastic perturbations. Moreover, these variability estimates can be used to forecast dynamics, classify underlying sources of stochastic dynamics, and estimate the “exit time” before a state change takes place (e.g., local extinction events). Importantly, the time-delay embedding methods that we employ make very few assumptions about the functions governing deterministic dynamics, which facilitates applications in systems with limited data and a priori biological knowledge. To demonstrate how complex dynamics without static equilibria can bias ecological stability estimates, we analyze simulated time series of abundance dynamics in a system with time-varying carrying capacity and empirically observed abundance dynamics of the green algae Chlamydomonas terricola grown in a diverse microcosm mixture under variable temperature conditions. We show that stability estimates based on raw observations greatly overestimate temporal variability and fail to accurately forecast time to extinction. In contrast, joint application of state space modeling, delay embedding, and particle filters were able to: (1) correctly quantify the contributions of deterministic versus stochastic variability; (2) successfully estimate “true” abundance dynamics; and (3) correctly forecast time to extinction. Our results therefore demonstrate the importance of accounting for effects of complex, nonstatic dynamics in studies of ecological stability and provide an empirically tractable and flexible toolkit for conducting these measurements.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-05-07
    Description: Previous field studies in the Southern Ocean (SO) indicated an increased occurrence and dominance of cryptophytes over diatoms due to climate change. To gain a better mechanistic understanding of how the two ecologically important SO phytoplankton groups cope with ocean acidification (OA) and iron (Fe) availability, we chose two common representatives of Antarctic waters, the cryptophyte Geminigera cryophila and the diatom Pseudo-nitzschia subcurvata. Both species were grown at 2°C under different pCO2 (400 vs. 900 μatm) and Fe (0.6 vs. 1.2 nM) conditions. For P. subcurvata, an additional high pCO2 level was applied (1400 μatm). At ambient pCO2 under low Fe supply, growth of G. cryophila almost stopped while it remained unaffected in P. subcurvata. Under high Fe conditions, OA was not beneficial for P. subcurvata, but stimulated growth and carbon production of G. cryophila. Under low Fe supply, P. subcurvata coped much better with OA than the cryptophyte, but invested more energy into photoacclimation. Our study reveals that Fe limitation was detrimental for the growth of G. cryophila and suppressed the positive OA effect. The diatom was efficient in coping with low Fe, but was stressed by OA while both factors together strongly impacted its growth. The distinct physiological response of both species to OA and Fe limitation explains their occurrence in the field. Based on our results, Fe availability is an important modulator of OA effects on SO phytoplankton, with different implications on the occurrence of cryptophytes and diatoms in the future.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: Although submarine landslides have been studied for decades, a persistent challenge is the integration of diverse geoscientific datasets to characterise failure processes. We present a core-log-seismic integration study of the Tuaheni Landslide Complex to investigate intact sediments beneath the undeformed seafloor as well as post-failure landslide deposits. Beneath the undeformed seafloor are coherent reflections underlain by a weakly-reflective and chaotic seismic unit. This chaotic unit is characterised by variable shear strength that correlates with density fluctuations. The basal shear zone of the Tuaheni landslide likely exploited one (or more) of the low shear strength intervals. Within landslide deposits is a widespread “Intra-debris Reflector”, previously interpreted as the landslide’s basal shear zone. This reflector is a subtle impedance drop around the boundary between upper and lower landslide units. However, there is no pronounced shear strength change across this horizon. Rather, there is a pronounced reduction in shear strength ∼10-15 m above the Intra-debris Reflector that presumably represents an induced weak layer that developed during failure. Free gas accumulates beneath some regions of the landslide and is widespread deeper in the sedimentary sequence, suggesting that free gas may have played a role in pre-conditioning the slope to failure. Additional pre-conditioning or failure triggers could have been seismic shaking and associated transient fluid pressure. Our study underscores the importance of detailed core-log-seismic integration approaches for investigating basal shear zone development in submarine landslides.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: Closure of the Central American Seaway (CAS) and hydrology of the Caribbean Sea triggered Northern Hemisphere Glaciation and played an important role in the Pliocene to modern-day climate re-establishing the deep and surface ocean currents. New data on Mn/Ca obtained with femtosecond laser ablation inductively coupled plasma mass spectrometry on well-preserved tests of the epibenthic foraminifer Cibicidoides wuellerstorfi and infaunal C. mundulus contribute to the interpretation of paleoenvironmental conditions of the Caribbean Sea between 5.2 and 2.2 Ma (million years) across the closure of the CAS. Hydrothermal activity at the Lesser Antilles may be a primary source of Mn in the well-oxygenated Plio-Pleistocene Caribbean Sea. Incorporation of Mn in the benthic foraminifer shell carbonate is assumed to be affected by surface ocean nutrient cycling, and may hence be an indicator of paleoproductivity. Key Points - Femtosecond-laser ablation inductively coupled plasma mass spectrometry provides a new approach on distinguishing Mn of the ontogenetic shell calcite from Mn of the authigenic coatings - Ontogenetic Mn within the foraminifer shell calcite may result from the regional nutrient cycle - Mn in the deep eastern Caribbean Sea may mainly derive from hydrothermal sources along the Antilles Island Arc
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: The ongoing development of the Global Carbon Project (GCP) global methane (CH4) budget shows a continuation of increasing CH4 emissions and CH4 accumulation in the atmosphere during 2000–2017. Here, we decompose the global budget into 19 regions (18 land and 1 oceanic) and five key source sectors to spatially attribute the observed global trends. A comparison of top-down (TD) (atmospheric and transport model-based) and bottom-up (BU) (inventory- and process model-based) CH4 emission estimates demonstrates robust temporal trends with CH4 emissions increasing in 16 of the 19 regions. Five regions—China, Southeast Asia, USA, South Asia, and Brazil—account for 〉40% of the global total emissions (their anthropogenic and natural sources together totaling 〉270 Tg CH4 yr−1 in 2008–2017). Two of these regions, China and South Asia, emit predominantly anthropogenic emissions (〉75%) and together emit more than 25% of global anthropogenic emissions. China and the Middle East show the largest increases in total emission rates over the 2000 to 2017 period with regional emissions increasing by 〉20%. In contrast, Europe and Korea and Japan show a steady decline in CH4 emission rates, with total emissions decreasing by ~10% between 2000 and 2017. Coal mining, waste (predominantly solid waste disposal) and livestock (especially enteric fermentation) are dominant drivers of observed emissions increases while declines appear driven by a combination of waste and fossil emission reductions. As such, together these sectors present the greatest risks of further increasing the atmospheric CH4 burden and the greatest opportunities for greenhouse gas abatement.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-07
    Description: The Kolumbo submarine volcano in the southern Aegean (Greece) is associated with repeated seismic unrest since at least two decades and the causes of this unrest are poorly understood. We present a ten-month long microseismicity data set for the period 2006–2007. The majority of earthquakes cluster in a cone-shaped portion of the crust below Kolumbo. The tip of this cone coincides with a low Vp-anomaly at 2–4 km depth, which is interpreted as a crustal melt reservoir. Our data set includes several earthquake swarms, of which we analyze the four with the highest events numbers in detail. Together the swarms form a zone of fracturing elongated in the SW-NE direction, parallel to major regional faults. All four swarms show a general upward migration of hypocenters and the cracking front propagates unusually fast, compared to swarms in other volcanic areas. We conclude that the swarm seismicity is most likely triggered by a combination of pore-pressure perturbations and the re-distribution of elastic stresses. Fluid pressure perturbations are induced likely by obstructions in the melt conduits in a rheologically strong layer between 6 and 9 km depth. We conclude that the zone of fractures below Kolumbo is exploited by melts ascending from the mantle and filling the crustal melt reservoir. Together with the recurring seismic unrest, our study suggests that a future eruption is probable and monitoring of the Kolumbo volcanic system is highly advisable. Key Points Seismicity is clustered in a cone-shaped volume beneath Kolumbo; the cone's tip coincides with a melt reservoir at 2–4 km depth Seismicity swarms occupy nearby, yet different portions of the crust, ruling out an origin on a single fault Swarms were likely triggered by a combination of fluid pressure perturbations and redistribution of elastic stresses
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...