ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (7)
  • American Meteorological Society  (6)
  • American Institute of Physics
  • International Union of Crystallography
  • 2020-2023  (15)
  • 1955-1959
  • 2022  (15)
Collection
Language
Years
Year
  • 1
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 102(10), (2021): E1936–E1951, https://doi.org/10.1175/BAMS-D-20-0113.1.
    Description: In the Bay of Bengal, the warm, dry boreal spring concludes with the onset of the summer monsoon and accompanying southwesterly winds, heavy rains, and variable air–sea fluxes. Here, we summarize the 2018 monsoon onset using observations collected through the multinational Monsoon Intraseasonal Oscillations in the Bay of Bengal (MISO-BoB) program between the United States, India, and Sri Lanka. MISO-BoB aims to improve understanding of monsoon intraseasonal variability, and the 2018 field effort captured the coupled air–sea response during a transition from active-to-break conditions in the central BoB. The active phase of the ∼20-day research cruise was characterized by warm sea surface temperature (SST 〉 30°C), cold atmospheric outflows with intermittent heavy rainfall, and increasing winds (from 2 to 15 m s−1). Accumulated rainfall exceeded 200 mm with 90% of precipitation occurring during the first week. The following break period was both dry and clear, with persistent 10–12 m s−1 wind and evaporation of 0.2 mm h−1. The evolving environmental state included a deepening ocean mixed layer (from ∼20 to 50 m), cooling SST (by ∼1°C), and warming/drying of the lower to midtroposphere. Local atmospheric development was consistent with phasing of the large-scale intraseasonal oscillation. The upper ocean stores significant heat in the BoB, enough to maintain SST above 29°C despite cooling by surface fluxes and ocean mixing. Comparison with reanalysis indicates biases in air–sea fluxes, which may be related to overly cool prescribed SST. Resolution of such biases offers a path toward improved forecasting of transition periods in the monsoon.
    Description: This work was supported through the U.S. Office of Naval Research’s Departmental Research Initiative: Monsoon Intraseasonal Oscillations in the Bay of Bengal, the Indian Ministry of Earth Science’s Ocean Mixing and Monsoons Program, and the Sri Lankan National Aquatic Resources Research and Development Agency. We thank the Captain and crew of the R/V Thompson for their help in data collection. Surface atmospheric fields included fluxes were quality controlled and processed by the Boundary Layer Observations and Processes Team within the NOAA Physical Sciences Laboratory. Forecast analysis was completed by India Meteorological Department. Drone image was taken by Shreyas Kamat with annotations by Gualtiero Spiro Jaeger. We also recognize the numerous researchers who supported cruise- and land-based measurements. This work represents Lamont-Doherty Earth Observatory contribution number 8503, and PMEL contribution number 5193.
    Description: 2022-04-01
    Keywords: Atmosphere-ocean interaction ; Monsoons ; In situ atmospheric observations ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-08-29
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(8), (2022): 1593-1611, https://doi.org/10.1175/jpo-d-21-0180.1.
    Description: This study presents novel observational estimates of turbulent dissipation and mixing in a standing meander between the Southeast Indian Ridge and the Macquarie Ridge in the Southern Ocean. By applying a finescale parameterization on the temperature, salinity, and velocity profiles collected from Electromagnetic Autonomous Profiling Explorer (EM-APEX) floats in the upper 1600 m, we estimated the intensity and spatial distribution of dissipation rate and diapycnal mixing along the float tracks and investigated the sources. The indirect estimates indicate strong spatial and temporal variability of turbulent mixing varying from O(10−6) to O(10−3) m2 s−1 in the upper 1600 m. Elevated turbulent mixing is mostly associated with the Subantarctic Front (SAF) and mesoscale eddies. In the upper 500 m, enhanced mixing is associated with downward-propagating wind-generated near-inertial waves as well as the interaction between cyclonic eddies and upward-propagating internal waves. In the study region, the local topography does not play a role in turbulent mixing in the upper part of the water column, which has similar values in profiles over rough and smooth topography. However, both remotely generated internal tides and lee waves could contribute to the upward-propagating energy. Our results point strongly to the generation of turbulent mixing through the interaction of internal waves and the intense mesoscale eddy field.
    Description: The observations were funded through grants from the Australian Research Council Discovery Project (DP170102162) and Australia’s Marine National Facility. Surface drifters were provided by Dr. Shaun Dolk of the Global Drifter Program. AC was supported by an Australian Research Council Postdoctoral Fellowship. AC, HEP, and NLB acknowledge support from the Australian Government Department of the Environment and Energy National Environmental Science Program and the ARC Centre of Excellence in Climate Extremes. KP acknowledges the support from the National Science Foundation.
    Keywords: Diapycnal mixing ; Eddies ; Fronts ; Inertia-gravity waves ; Ocean dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Pirotta, E., Thomas, L., Costa, D., Hall, A., Harris, C., Harwood, J., Kraus, S., Miller, P., Moore, M., Photopoulou, T., Rolland, R., Schwacke, L., Simmons, S., Southall, B., & Tyack, P. Understanding the combined effects of multiple stressors: a new perspective on a longstanding challenge. Science of The Total Environment, 821, (2022): 153322, https://doi.org/10.1016/j.scitotenv.2022.153322.
    Description: Wildlife populations and their habitats are exposed to an expanding diversity and intensity of stressors caused by human activities, within the broader context of natural processes and increasing pressure from climate change. Estimating how these multiple stressors affect individuals, populations, and ecosystems is thus of growing importance. However, their combined effects often cannot be predicted reliably from the individual effects of each stressor, and we lack the mechanistic understanding and analytical tools to predict their joint outcomes. We review the science of multiple stressors and present a conceptual framework that captures and reconciles the variety of existing approaches for assessing combined effects. Specifically, we show that all approaches lie along a spectrum, reflecting increasing assumptions about the mechanisms that regulate the action of single stressors and their combined effects. An emphasis on mechanisms improves analytical precision and predictive power but could introduce bias if the underlying assumptions are incorrect. A purely empirical approach has less risk of bias but requires adequate data on the effects of the full range of anticipated combinations of stressor types and magnitudes. We illustrate how this spectrum can be formalised into specific analytical methods, using an example of North Atlantic right whales feeding on limited prey resources while simultaneously being affected by entanglement in fishing gear. In practice, case-specific management needs and data availability will guide the exploration of the stressor combinations of interest and the selection of a suitable trade-off between precision and bias. We argue that the primary goal for adaptive management should be to identify the most practical and effective ways to remove or reduce specific combinations of stressors, bringing the risk of adverse impacts on populations and ecosystems below acceptable thresholds.
    Description: This work was supported by the Office of Naval Research [grant numbers N000142012697, N000142112096]; and the Strategic Environmental Research and Development Program [grant numbers RC20-1097, RC20-7188, RC21-3091].
    Keywords: Adaptive management ; Climate change ; Combined effects ; Mechanistic modelling ; Multiple stressors ; Population consequences
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-03-21
    Description: The presence of weak phyllosilicates in mature carbonate fault zones has been invoked to explain weak faults. However, the relation between frictional strength, fault stability, mineralogical composition, and fabric of fault gouge, composed of strong and weak minerals, is poorly constrained. We used a biaxial apparatus to systematically shear different mixtures of shale (68% clay, 23% quartz and 4% plagioclase) and calcite, as powdered gouge, at room temperature, under constant normal stresses of 30, 50, 100 MPa and under room-dry and pore fluid-saturated conditions, i.e. CaCO3-equilibrated water. We performed 30 friction experiments during which velocity-stepping and slide-hold-slide tests were employed to assess frictional stability and to measure frictional healing, respectively. Our frictional data indicate that the mineralogical composition of fault gouges significantly affects frictional strength, stability, and healing as well as the presence of CaCO3-equilibrated water. Under room-dry condition, the increasing shale content determines a reduction in frictional strength, from μ = 0.71 to μ = 0.43, a lowering of the healing rates and a transition from velocity-weakening to velocity-strengthening behavior. Under wet condition, with increasing shale content we observe a more significant reduction in frictional strength (μ = 0.65–0.37), a near-zero healing and a velocity strengthening behavior. Microstructural investigations evidence a transition from localized deformation promoted by grain size reduction, in calcite-rich samples, to a more distributed deformation with frictional sliding along clay-enriched shear planes in samples with shale content greater than 50%. For faults cutting across sedimentary sequences composed of carbonates and clay-rich sediments, our results suggest that clay concentration and its ability to form foliated and interconnected networks promotes important heterogeneities in fault strength and slip behavior.
    Description: Published
    Description: 228811
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: Carbonate faults ; Fault slip behavior ; 04.02. Exploration geophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-06-24
    Description: Scientific tasks aimed at decoding and characterizing complex systems and processes at high pressures set new challenges for modern X‐ray diffraction instrumentation in terms of X‐ray flux, focal spot size and sample positioning. Presented here are new developments at the Extreme Conditions beamline (P02.2, PETRA III, DESY, Germany) that enable considerable improvements in data collection at very high pressures and small scattering volumes. In particular, the focusing of the X‐ray beam to the sub‐micrometer level is described, and control of the aberrations of the focusing compound refractive lenses is made possible with the implementation of a correcting phase plate. This device provides a significant enhancement of the signal‐to‐noise ratio by conditioning the beam shape profile at the focal spot. A new sample alignment system with a small sphere of confusion enables single‐crystal data collection from grains of micrometer to sub‐micrometer dimensions subjected to pressures as high as 200 GPa. The combination of the technical development of the optical path and the sample alignment system contributes to research and gives benefits on various levels, including rapid and accurate diffraction mapping of samples with sub‐micrometer resolution at multimegabar pressures.
    Description: Facing the challenges of X‐ray diffraction from tiny samples subjected to multimegabar pressures, instrumentation developments are presented that enable, among other studies, single‐crystal data collection from micrometer‐ to sub‐micrometer‐sized grains. The developments are based on a sub‐micrometer beam capability employing compound refractive lenses operating with a phase correcting plate and a precise motorization solution.
    Keywords: ddc:548
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-12
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(10), (2022): 2325–2341, https://doi.org/10.1175/jpo-d-21-0015.1.
    Description: The ocean surface boundary layer is a gateway of energy transfer into the ocean. Wind-driven shear and meteorologically forced convection inject turbulent kinetic energy into the surface boundary layer, mixing the upper ocean and transforming its density structure. In the absence of direct observations or the capability to resolve subgrid-scale 3D turbulence in operational ocean models, the oceanography community relies on surface boundary layer similarity scalings (BLS) of shear and convective turbulence to represent this mixing. Despite their importance, near-surface mixing processes (and ubiquitous BLS representations of these processes) have been undersampled in high-energy forcing regimes such as the Southern Ocean. With the maturing of autonomous sampling platforms, there is now an opportunity to collect high-resolution spatial and temporal measurements in the full range of forcing conditions. Here, we characterize near-surface turbulence under strong wind forcing using the first long-duration glider microstructure survey of the Southern Ocean. We leverage these data to show that the measured turbulence is significantly higher than standard shear-convective BLS in the shallower parts of the surface boundary layer and lower than standard shear-convective BLS in the deeper parts of the surface boundary layer; the latter of which is not easily explained by present wave-effect literature. Consistent with the CBLAST (Coupled Boundary Layers and Air Sea Transfer) low winds experiment, this bias has the largest magnitude and spread in the shallowest 10% of the actively mixing layer under low-wind and breaking wave conditions, when relatively low levels of turbulent kinetic energy (TKE) in surface regime are easily biased by wave events.
    Description: This paper is VIMS Contribution 4103. Computational resources were provided by the VIMS Ocean-Atmosphere and Climate Change Research Fund. AUSSOM was supported by the OCE Division of the National Science Foundation (1558639).
    Keywords: Turbulence ; Wind shear ; Boundary layer ; Parameterization
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-18
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Pold, G., Kwiatkowski, B. L., Rastetter, E. B., & Sistla, S. A. Sporadic P limitation constrains microbial growth and facilitates SOM accumulation in the stoichiometrically coupled, acclimating microbe-plant-soil model. Soil Biology & Biochemistry, 165, (2022): 108489, https://doi.org/10.1016/j.soilbio.2021.108489.
    Description: Requirements for biomass carbon (C), nitrogen (N), and phosphorus (P) constrain organism growth and are important agents for structuring ecosystems. Arctic tundra habitats are strongly nutrient limited as decomposition and recycling of nutrients are slowed by low temperature. Modeling interactions among these elemental cycles affords an opportunity to explore how disturbances such as climate change might differentially affect these nutrient cycles. Here we introduce a C–N–P-coupled version of the Stoichiometrically Coupled Acclimating Microbe-Plant-Soil (SCAMPS) model, “SCAMPS-CNP”, and a corresponding modified CN-only model, “SCAMPS-CN”. We compared how SCAMPS-CNP and the modified SCAMPS-CN models project a moderate (RCP 6.0) air warming scenario will impact tussock tundra nutrient availability and ecosystem C stocks. SCAMPS-CNP was characterized by larger SOM and smaller organism C stocks compared to SCAMPS-CN, and a greater reduction in ecosystem C stocks under warming. This difference can largely be attributed to a smaller microbial biomass in the CNP model, which, instead of being driven by direct costs of P acquisition, was driven by variable resource limitation due to asynchronous C, N, and P availability and demand. Warming facilitated a greater relative increase in plant and microbial biomass in SCAMPS-CNP, however, facilitated by increased extracellular enzyme pools and activity, which more than offset the metabolic costs associated with their production. Although the microbial community was able to flexibly adapt its stoichiometry and become more bacteria-like (N-rich) in both models, its stoichiometry deviated further from its target value in the CNP model because of the need to balance cellular NP ratio. Our results indicate that seasonality and asynchrony in resources affect predicted changes in ecosystem C storage under warming in these models, and therefore build on a growing body of literature indicating stoichiometry should be considered in carbon cycling projections.
    Description: This work was funded by the National Science Foundation Signals in the Soil grant number 1841610 to SAS and EBR.
    Keywords: Stoichiometry ; Modeling ; Microbial physiology ; Tundra ; Climate change
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tyne, R., Barry, P., Cheng, A., Hillegonds, D., Kim, J.-H., McIntosh, J., & Ballentine, C. Basin architecture controls on the chemical evolution and 4He distribution of groundwater in the Paradox Basin. Earth and Planetary Science Letters, 589, (2022):117580, https://doi.org/10.1016/j.epsl.2022.117580.
    Description: Fluids such as 4He, H2, CO2 and hydrocarbons accumulate within Earth's crust. Crustal reservoirs also have potential to store anthropogenic waste (e.g., CO2, spent nuclear fuel). Understanding fluid migration and how this is impacted by basin stratigraphy and evolution is key to exploiting fluid accumulations and identifying viable storage sites. Noble gases are powerful tracers of fluid migration and chemical evolution, as they are inert and only fractionate by physical processes. The distribution of 4He, in particular, is an important tool for understanding diffusion within basins and for groundwater dating. Here, we report noble gas isotope and abundance data from 36 wells across the Paradox Basin, Colorado Plateau, USA, which has abundant hydrocarbon, 4He and CO2 accumulations. Both groundwater and hydrocarbon samples were collected from 7 stratigraphic units, including within, above and below the Paradox Formation (P.Fm) evaporites. Air-corrected helium isotope ratios (0.0046 - 0.127 RA) are consistent with radiogenic overprinting of predominantly groundwater-derived noble gases. The highest radiogenic noble gas concentrations are found in formations below the P.Fm. Atmosphere-derived noble gas signatures are consistent with meteoric recharge and multi-phase interactions both above and below the P.Fm, with greater groundwater-gas interactions in the shallower formations. Vertical diffusion models, used to reconstruct observed groundwater helium concentrations, show the P.Fm evaporite layer to be effectively impermeable to helium diffusion and a regional barrier for mobile elements but, similar to other basins, a basement 4He flux is required to accumulate the 4He concentrations observed beneath the P.Fm. The verification that evaporites are regionally impermeable to diffusion, of even the most diffusive elements, is important for sub-salt helium and hydrogen exploration and storage, and a critical parameter in determining 4He-derived mean groundwater ages. This is critical to understanding the role of basin stratigraphy and deformation on fluid flow and gas accumulation.
    Description: This work was supported by a Natural Environment Research Council studentship to R.L. Tyne (Grant ref. NE/L002612/1). We gratefully acknowledge the William F. Keck Foundation for support of this research, and the National Science Foundation (NSF EAR #2120733). J.C. McIntosh and C.J. Ballentine are fellows of the CIFAR Earth4D Subsurface Science and Exploration Program. The authors would like to acknowledge the U.S. Bureau of Reclamation, Paradox Resources, Navajo Petroleum, US Oil and Gas INC, Anson Resources, Lantz Indergard (Lisbon Valley Mining Co.), Ambria Dell'Oro and Mohammad Marza for help with sampling.
    Keywords: Noble gases ; Helium ; Paradox Basin ; Crustal fluid dating ; Groundwater migration
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Johnson, J. E., MacLeod, D. R., Phillips, S. C., Phillips, M. P., & Divins, D. L. Primary deposition and early diagenetic effects on the high saturation accumulation of gas hydrate in a silt dominated reservoir in the Gulf of Mexico. Marine Geology, 444, (2022): 106718, https://doi.org/10.1016/j.margeo.2021.106718.
    Description: On continental margins, high saturation gas hydrate systems (〉60% pore volume) are common in canyon and channel environments within the gas hydrate stability zone, where reservoirs are dominated by coarse-grained, high porosity sand deposits. Recent studies, including the results presented here, suggest that rapidly deposited, silt-dominated channel-levee environments can also host high saturation gas hydrate accumulations. Here we present several sedimentological data sets, including sediment composition, biostratigraphic age from calcareous nannofossils, grain size, total organic carbon (TOC), C/N elemental ratio, δ13C-TOC, CaCO3, total sulfur (TS), and δ34S-TS from sediments collected with pressure cores from a gas hydrate rich, turbidite channel-levee system in the Gulf of Mexico during the 2017 UT-GOM2-1 Hydrate Pressure Coring Expedition. Our results indicate the reservoir is composed of three main lithofacies, which have distinct sediment grain size distributions (type A-silty clay to clayey silt, type B-clayey silt, and type C-sandy silt to silty sand) that are characteristic of variable turbidity current energy regimes within a Pleistocene (〈 0.91 Ma) channel-levee environment. We document that the TOC in the sediments of the reservoir is terrestrial in origin and contained within the fine fraction of each lithofacies, while the CaCO3 fraction is composed of primarily reworked grains, including Cretaceous calcareous nannofossils, and part of the detrital load. The lack of biogenic grains within the finest grained sediment intervals throughout the reservoir suggests interevent hemipelagic sediments are not preserved, resulting in a reservoir sequence of silt dominated, stacked turbidites. We observe two zones of enhanced TS at the top and bottom of the reservoir that correspond with enriched bulk sediment δ34S, indicating stalled or slowly advancing paleo-sulfate-methane transition zone (SMTZ) positions likely driven by relative decreases in sedimentation rate. Despite these two diagenetic zones, the low abundance of diagenetic precipitates throughout the reservoir allowed the primary porosity to remain largely intact, thus better preserving primary porosity for subsequent pore-filling gas hydrate. In canyon, channel, and levee environments, early diagenesis may be regulated via sedimentation rates, where high rates result in rapid progression through the SMTZ and minimal diagenetic mineralization and low rates result in the stalling of the SMTZ, enhancing diagenetic mineralization. Here, we observed some enhanced pyritization to implicate potential sedimentation rate changes, but not enough to consume primary porosity, resulting in a high saturation gas hydrate reservoir. These results emphasize the important implications of sedimentary processes, sedimentation rates, and early diagenesis on the distribution of gas hydrate in marine sediments along continental margins.
    Description: This research and the UT-GOM2-1Hydrate Pressure Coring Expedition was supported by the U.S. Department of Energy (DOE) through Project # DE-FE0023919 “Deepwater Methane Hydrate Characterization and Scientific Assessment”. Graduate Teaching Assistant support and additional research funds for co-author MacLeod were provided through the UNH Dept. of Earth Sciences and the Jonathan W. Herndon Scholarship. Co-author Phillips was supported by funding from the U.S. Geological Survey's Coastal and Marine Hazards and Resources Program and DOE Interagency Agreement89243320SFE000013.
    Keywords: Methane hydrate ; Channel levee ; Turbidites ; Anaerobic oxidation of methane
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-09-25
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(4), (2022): 597–616, https://doi.org/10.1175/jpo-d-21-0121.1.
    Description: We provide a first-principles analysis of the energy fluxes in the oceanic internal wave field. The resulting formula is remarkably similar to the renowned phenomenological formula for the turbulent dissipation rate in the ocean, which is known as the finescale parameterization. The prediction is based on the wave turbulence theory of internal gravity waves and on a new methodology devised for the computation of the associated energy fluxes. In the standard spectral representation of the wave energy density, in the two-dimensional vertical wavenumber–frequency (m–ω) domain, the energy fluxes associated with the steady state are found to be directed downscale in both coordinates, closely matching the finescale parameterization formula in functional form and in magnitude. These energy transfers are composed of a “local” and a “scale-separated” contributions; while the former is quantified numerically, the latter is dominated by the induced diffusion process and is amenable to analytical treatment. Contrary to previous results indicating an inverse energy cascade from high frequency to low, at odds with observations, our analysis of all nonzero coefficients of the diffusion tensor predicts a direct energy cascade. Moreover, by the same analysis fundamental spectra that had been deemed “no-flux” solutions are reinstated to the status of “constant-downscale-flux” solutions. This is consequential for an understanding of energy fluxes, sources, and sinks that fits in the observational paradigm of the finescale parameterization, solving at once two long-standing paradoxes that had earned the name of “oceanic ultraviolet catastrophe.”
    Description: The authors gratefully acknowledge support from the ONR Grant N00014-17-1-2852. YL gratefully acknowledges support from NSF DMS Award 2009418.
    Description: 2022-09-25
    Keywords: Ocean ; Gravity waves ; Nonlinear dynamics ; Ocean dynamics ; Mixing ; Fluxes ; Isopycnal coordinates ; Nonlinear models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...