ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-03-20
    Description: We assess the role of direct and indirect effects of coastal environmental drivers (including the parameters of the carbonate system) on energy expenditure (MR) and body mass (M) of the intertidal mussel, Perumytilus purpuratus, across 10 populations distributed over 2800 km along the Southern Eastern Pacific (SEP) coast. We find biogeographic and local variation in carbonate system variables mediates the effects of latitude and temperature on metabolic rate allometry along the SEP coast. Also, the fitted Piecewise Structural Equation models (PSEM) have greater predictive ability (conditional R2 = 0.95) relative to the allometric scaling model (R2 = 0.35). The largest standardized coefficients for MR and M were determined by the influence of temperature and latitude, followed by pCO2, pH, total alkalinity, and salinity. Thus, physiological diversity of P. purpuratus along the SEP coast emerges as the result of direct and indirect effects of biogeographic and local environmental variables.
    Keywords: Alkalinity, total; Animalia; Aragonite saturation state; Benthic animals; Benthos; Bicarbonate ion; Biogeographical province; Body length; Buoyant mass; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Category; Coast and continental shelf; Field observation; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Height; LATITUDE; LONGITUDE; Mass; Metabolic rate of oxygen; Metabolic rate of oxygen, per animal mass; Mollusca; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Perumytilus purpuratus; pH; Respiration; Salinity; Shell, mass; Single species; Site; South Pacific; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Temperate; Temperature; Temperature, water; Tropical; Type; Upwelling; Width
    Type: Dataset
    Format: text/tab-separated-values, 9249 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-05-03
    Description: Sources of geophysical noise (such as wind, sea waves and earthquakes) or of anthropogenic noise impact ground-based gravitational-wave interferometric detectors, causing transient sensitivity worsening and gaps in data taking. During the one year-long third observing run (O3: from April 01, 2019 to March 27, 2020), the Virgo Collaboration collected a statistically significant dataset, used in this article to study the response of the detector to a variety of environmental conditions. We correlated environmental parameters to global detector performance, such as observation range, duty cycle and control losses. Where possible, we identified weaknesses in the detector that will be used to elaborate strategies in order to improve Virgo robustness against external disturbances for the next data taking period, O4, currently planned to start at the end of 2022. The lessons learned could also provide useful insights for the design of the next generation of ground-based interferometers.
    Description: Published
    Description: 235009
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Keywords: Gravitational waves ; ambient noise ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-07-06
    Description: The climate change impact and adaptation simulations from the Agricultural Model Intercomparison and Improvement Project (AgMIP) for wheat provide a unique dataset of multi-model ensemble simulations for 60 representative global locations covering all global wheat mega environments. The multi-model ensemble reported here has been thoroughly benchmarked against a large number of experimental data, including different locations, growing season temperatures, atmospheric CO2 concentration, heat stress scenarios, and their interactions. In this paper, we describe the main characteristics of this global simulation dataset. Detailed cultivar, crop management, and soil datasets were compiled for all locations to drive 32 wheat growth models. The dataset consists of 30-year simulated data including 25 output variables for nine climate scenarios, including Baseline (1980-2010) with 360 or 550 ppm CO2, Baseline +2oC or +4oC with 360 or 550 ppm CO2, a mid-century climate change scenario (RCP8.5, 571 ppm CO2), and 1.5°C (423 ppm CO2) and 2.0oC (487 ppm CO2) warming above the pre-industrial period (HAPPI). This global simulation dataset can be used as a benchmark from a well-tested multi-model ensemble in future analyses of global wheat. Also, resource use efficiency (e.g., for radiation, water, and nitrogen use) and uncertainty analyses under different climate scenarios can be explored at different scales. The DOI for the dataset is 10.5281/zenodo.4027033 (AgMIP-Wheat, 2020), and all the data are available on the data repository of Zenodo (doi: 10.5281/zenodo.4027033). Two scientific publications have been published based on some of these data here.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: Ocean artificial upwelling has been suggested to boost primary production and increase harvestable resources such as fish. Yet, for this ecosystem-based approach to work, an effective energy transfer up the food web is required. Here, we studied the trophic role of microzooplankton under artificial upwelling via biomass and community composition as well as grazing rates on phytoplankton. Using mesocosms in the oligotrophic ocean, we supplied nutrient-rich deep water at varying intensities (low to high) and addition modes (a Singular large pulse or smaller Recurring pulses). Deep-water fertilization created a diatom-dominated bloom that scaled with the amount of inorganic nutrients added, but also Synechococcus -like cells, picoeukaryotes and nanophytoplankton increased in abundance with added nutrients. After 30 days, towards the end of the experiment, coccolithophores bloomed under recurring upwelling of high intensity. Across all upwelling scenarios, the microzooplankton community was dominated by ciliates, dinoflagellates (mixo- and heterotrophic) and radiolarians. Under the highest upwelling intensity, the average grazing rates of Synechococcus -like cells, picoeukaryotes and nanophytoplankton by microzooplankton were 0.35 d -1 ± 0.18 (SD), 0.09 d -1 ± 0.12 (SD), and 0.11 d -1 ± 0.13 (SD), respectively. There was little temporal variation in grazing of nanophytoplankton but grazing of Synechococcus -like cells and picoeukaryotes were more variable. There were positive correlations between abundance of these groups and grazing rates, suggesting a response in the microzooplankton community to prey availability. The average phytoplankton to microzooplankton ratio (biovolume) increased with added deep water, and this increase was highest in the Singular treatment, reaching ~30 (m 3 m -3 ), whereas the phytoplankton to total zooplankton biomass ratio (weight) increased from ~1 under low upwelling to ~6 (g g -1 ) in the highest upwelling but without a difference between the Singular and the Recurring mode. Several smaller, recurring upwelling events increased the importance of microzooplankton compared with one large pulse of deep water. Our results demonstrate that microzooplankton would be an important component for trophic transfer if artificial upwelling would be carried out at scale in the oligotrophic ocean.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: other
    Format: image
    Format: image
    Format: image
    Format: image
    Format: image
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...