ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (5)
  • 1970-1974
  • 2021  (5)
Collection
Language
Years
Year
  • 1
    Publication Date: 2022-03-21
    Description: Changes in land use and climate are the main drivers of change in soil organic matter contents. We investigated the impact of the largest policy-induced land conversion to arable land, the Virgin Lands Campaign (VLC), from 1954 to 1963, of the massive cropland abandonment after 1990 and of climate change on soil organic carbon (SOC) stocks in steppes of Russia and Kazakhstan. We simulated carbon budgets from the pre-VLC period (1900) until 2100 using a dynamic vegetation model to assess the impacts of observed land-use change as well as future climate and land-use change scenarios. The simulations suggest for the entire VLC region (266 million hectares) that the historic cropland expansion resulted in emissions of 1.6⋅ 1015 g (= 1.6 Pg) carbon between 1950 and 1965 compared to 0.6 Pg in a scenario without the expansion. From 1990 to 2100, climate change alone is projected to cause emissions of about 1.8 (± 1.1) Pg carbon. Hypothetical recultivation of the cropland that has been abandoned after the fall of the Soviet Union until 2050 may cause emissions of 3.5 (± 0.9) Pg carbon until 2100, whereas the abandonment of all cropland until 2050 would lead to sequestration of 1.8 (± 1.2) Pg carbon. For the climate scenarios based on SRES (Special Report on Emission Scenarios) emission pathways, SOC declined only moderately for constant land use but substantially with further cropland expansion. The variation of SOC in response to the climate scenarios was smaller than that in response to the land-use scenarios. This suggests that the effects of land-use change on SOC dynamics may become as relevant as those of future climate change in the Eurasian steppes.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-11-11
    Description: The eruption frequency of geysers can be studied easily on the surface. However, details of the internal structure including possible water and gas filled chambers feeding eruptions and the driving mechanisms often remain elusive. We used a multidisciplinary network of seismometers, video cameras, water pressure sensors and one tiltmeter to study the eruptive cycle, internal structure, and mechanisms driving the eruptive cycle of Strokkur geyser in June 2018. An eruptive cycle at Strokkur always consists of four phases: (1) Eruption, (2) post-eruptive conduit refilling, (3) gas filling of the bubble trap, and (4) regular bubble collapse at shallow depth in the conduit. For a typical single eruption 19 ± 4 bubble collapses occur in Phase 3 and 8 ± 2 collapses in Phase 4 at a mean spacing of 1.52 ± 0.29 and 24.5 ± 5.9 s, respectively. These collapses release latent heat to the fluid in the bubble trap (Phase 3) and later to the fluid in the conduit (Phase 4). The latter eventually reaches thermodynamic conditions for an eruption. Single to sextuple eruptions have similar spacings between bubble collapses and are likely fed from the same bubble trap at 23.7 ± 4.4 m depth, 13–23 m west of the conduit. However, the duration of the eruption and recharging phase linearly increases likely due to a larger water, gas and heat loss from the system. Our tremor data provides documented evidence for a bubble trap beneath a pool geyser.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-01-17
    Description: Laser diffraction spectrometry allows for efficiently obtaining high-resolution grain size data. However, pretreatment and dispersion of aggregates in sediment samples are essential pre-requisites for acquiring accurate results using this method. This study evaluates the effectiveness of five dispersing agents in deflocculating the investigated fluvial sediments and the resulting grain size distribution obtained by laser diffraction spectrometry. We also examine the ability of the different dispersing agents to deflocculate sediment samples treated by thermal combustion. Distilled water presented a low efficiency in deflocculating the samples and yielded a near-zero clay content for samples with an expected clay content. The other chemical dispersants were effective in dispersing aggregates and yielding clay, albeit with different efficiencies. Calgon had the highest dispersing ability, followed closely by sodium tripolyphosphate. The performance of chemical treatment with sodium oxalate approaches that of sodium tripolyphosphate. However, it leads to the formation of precipitates in the samples, obscuring the actual grain size data. Sodium pyrophosphate derived the least amount of deflocculation among the four chemical dispersants. Furthermore, all the chemical dispersants were found to be ineffective in dispersing aggregates in samples treated by thermal combustion.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-01-31
    Description: The varved sediment of Lake Gościąż (Central Poland) is one of the most detailed and complete climate archives of the Late Glacial and the Holocene in Central Europe. Here, we present microfacies analyses in combination with μXRF core scanning and a detailed varve chronology of a new and continuous GOS18 sediment record. This record presents six lithozones that mark the most prominent depositional and geochemical changes during the Holocene and Late Glacial. Varve boundaries and five main varve microfacies types were distinguished under petrographic microscope. Analysis provides detailed insights into depositional processes and its changes since the Late Glacial. Microfacies components were used to interpret processes leading to varve formation. A new and independent chronology is obtained by triple varve counting on petrographic thin sections that is complemented by 137Cs measurements and 14C AMS dating of terrestrial plant remains. The age-depth model consists of three parts: (1) the upper part (0–520 cm) that is primarily based on varve counting, (2) the middle part (520–758 cm) obtained through age-depth modelling and (3) the lower part (758–1897 cm) developed by varve counting. The bottom of the composite profile coincides with the onset of lacustrine sedimentation in the late Allerød at 12,834 +134/-233 varve yr BP. The largest shift in geochemistry, expressed by log(Ca/Ti) and log(Si/Ti) ratios show a rapid increase of calcite precipitation and primary productivity at 7940 +112/-168 varve yr BP. Possible triggers for this include local changes in hydrology as the formation of “Na Jazach” system due to the Ruda River development and fluctuations of lake water level.
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-01-31
    Description: The sediment profile from Lake Gościąż in central Poland comprises a continuous, seasonally resolved and exceptionally well‐preserved archive of the Younger Dryas (YD) climate variation. This provides a unique opportunity for detailed investigation of lake system responses during periods of rapid climate cooling (YD onset) and warming (YD termination). The new varve record of Lake Gościąż presented here spans 1662 years from the late Allerød (AL) to the early Preboreal (PB). Microscopic varve counting provides an independent chronology with a YD duration of 1149+14/–22 years, which confirms previous results of 1140±40 years. We link stable oxygen isotopes and chironomid‐based air temperature reconstructions with the response of various geochemical and varve microfacies proxies especially focusing on the onset and termination of the YD. Cooling at the YD onset lasted ~180 years, which is about a century longer than the terminal warming that was completed in ~70 years. During the AL/YD transition, environmental proxy data lagged the onset of cooling by ~90 years and revealed an increase of lake productivity and internal lake re‐suspension as well as slightly higher detrital sediment input. In contrast, rapid warming and environmental changes during the YD/PB transition occurred simultaneously. However, initial changes such as declining diatom deposition and detrital input occurred already a few centuries before the rapid warming at the YD/PB transition. These environmental changes likely reflect a gradual increase in summer air temperatures already during the YD. Our data indicate complex and differing environmental responses to the major climate changes related to the YD, which involve different proxy sensitivities and threshold processes.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...