ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (21)
  • Geological Society of London  (8)
  • Cell Press  (7)
  • American Geophysical Union (AGU)
  • American Institute of Physics (AIP)
  • Amsterdam : Elsevier
  • National Academy of Sciences
  • 2015-2019  (38)
  • 2000-2004
  • 1975-1979
  • 2019  (38)
Collection
Years
  • 2015-2019  (38)
  • 2000-2004
  • 1975-1979
Year
  • 1
    Publication Date: 2019-12-05
    Description: Plants produce an array of natural products with important ecological functions. These compounds are often decorated with oligosaccharide groups that influence bioactivity, but the biosynthesis of such sugar chains is not well understood. Triterpene glycosides (saponins) are a large family of plant natural products that determine important agronomic traits, as exemplified by avenacins, antimicrobial defense compounds produced by oats. Avenacins have a branched trisaccharide moiety consisting ofl-arabinose linked to 2d-glucose molecules that is critical for antifungal activity. Plant natural product glycosylation is usually performed by uridine diphosphate-dependent glycosyltransferases (UGTs). We previously characterized the arabinosyltransferase that initiates the avenacin sugar chain; however, the enzymes that add the 2 remainingd-glucose molecules have remained elusive. Here we characterize the enzymes that catalyze these last 2 glucosylation steps. AsUGT91G16 is a classical cytosolic UGT that adds a 1,2-linkedd-glucose molecule tol-arabinose. Unexpectedly, the enzyme that adds the final 1,4-linkedd-glucose (AsTG1) is not a UGT, but rather a sugar transferase belonging to Glycosyl Hydrolase family 1 (GH1). Unlike classical UGTs, AsTG1 is vacuolar. Analysis of oat mutants reveals thatAsTG1corresponds toSad3, a previously uncharacterized locus shown by mutation to be required for avenacin biosynthesis.AsTG1andAsUGT91G16form part of the avenacin biosynthetic gene cluster. Our demonstration that a vacuolar transglucosidase family member plays a critical role in triterpene biosynthesis highlights the importance of considering other classes of carbohydrate-active enzymes in addition to UGTs as candidates when elucidating pathways for the biosynthesis of glycosylated natural products in plants.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: 〈span〉〈div〉Abstract〈/div〉At the 2015 United Nations International Climate Change Conference in Paris (COP21), 197 national parties committed to limit global warming to well below 2°C. But current plans and pace of progress are still far from sufficient to achieve this objective. Here we review the role that geoscience and the subsurface could play in decarbonizing electricity production, industry, transport and heating to meet UK and international climate change targets, based on contributions to the 2019 Bryan Lovell meeting held at the Geological Society of London. Technologies discussed at the meeting involved decarbonization of electricity production via renewable sources of power generation, substitution of domestic heating using geothermal energy, use of carbon capture and storage (CCS), and more ambitious technologies such as bioenergy and carbon capture and storage (BECCS) that target negative emissions. It was noted also that growth in renewable energy supply will lead to increased demand for geological materials to sustain the electrification of the vehicle fleet and other low-carbon technologies. The overall conclusion reached at the 2019 Bryan Lovell meeting was that geoscience is critical to decarbonization, but that the geoscience community must influence decision-makers so that the value of the subsurface to decarbonization is understood.〈/span〉
    Print ISSN: 1354-0793
    Electronic ISSN: 2041-496X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-01
    Description: Limonoids are natural products made by plants belonging to the Meliaceae (Mahogany) and Rutaceae (Citrus) families. They are well known for their insecticidal activity, contribution to bitterness in citrus fruits, and potential pharmaceutical properties. The best known limonoid insecticide is azadirachtin, produced by the neem tree (Azadirachta indica). Despite intensive investigation of limonoids over the last half century, the route of limonoid biosynthesis remains unknown. Limonoids are classified as tetranortriterpenes because the prototypical 26-carbon limonoid scaffold is postulated to be formed from a 30-carbon triterpene scaffold by loss of 4 carbons with associated furan ring formation, by an as yet unknown mechanism. Here we have mined genome and transcriptome sequence resources for 3 diverse limonoid-producing species (A. indica, Melia azedarach, and Citrus sinensis) to elucidate the early steps in limonoid biosynthesis. We identify an oxidosqualene cyclase able to produce the potential 30-carbon triterpene scaffold precursor tirucalla-7,24-dien-3β-ol from each of the 3 species. We further identify coexpressed cytochrome P450 enzymes from M. azedarach (MaCYP71CD2 and MaCYP71BQ5) and C. sinensis (CsCYP71CD1 and CsCYP71BQ4) that are capable of 3 oxidations of tirucalla-7,24-dien-3β-ol, resulting in spontaneous hemiacetal ring formation and the production of the protolimonoid melianol. Our work reports the characterization of protolimonoid biosynthetic enzymes from different plant species and supports the notion of pathway conservation between both plant families. It further paves the way for engineering crop plants with enhanced insect resistance and producing high-value limonoids for pharmaceutical and other applications by expression in heterologous hosts.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019
    Description: 〈span〉〈div〉Abstract〈/div〉At the 2015 United Nations international climate change conference in Paris (COP21), 197 national parties committed to limit global warming to well below 2°C. But current plans and pace of progress are still far from sufficient to achieve this objective. Here we review the role that geoscience and the subsurface could play in decarbonising electricity production, industry, transport, and heating, to meet UK and international climate change targets, based on contributions to the 2019 Bryan Lovell meeting held at the Geological Society of London. Technologies discussed at the meeting involved decarbonisation of electricity production via renewable sources of power generation, substitution of domestic heating using geothermal energy, use of carbon capture and storage (CCS), and more ambitious technologies such as bioenergy and carbon capture and storage (BECCS) that target negative emissions. It was noted also that growth in renewable energy supply will lead to increased demand for geological materials to sustain the electrification of the vehicle fleet and other low-carbon technologies. The overall conclusion reached at the 2019 Bryan Lovell meeting was that geoscience is critical to decarbonisation, but that the geoscience community must influence decision makers so that the value of the subsurface to decarbonisation is understood.〈/span〉
    Print ISSN: 1354-0793
    Electronic ISSN: 2041-496X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-01-01
    Print ISSN: 2451-9308
    Electronic ISSN: 2451-9294
    Topics: Chemistry and Pharmacology
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019
    Description: 〈span〉〈div〉Abstract〈/div〉Elevated topography is evident across the continental margins of the Atlantic. The Cumberland Peninsula, Baffin Island, formed as the result of rifting along the Labrador-Baffin margins in the late Mesozoic and is dominated by low relief high elevation topography. Apatite fission track (AFT) analysis of the landscape previously concluded that the area has experienced a differential protracted cooling regime since the Devonian; however, defined periods of cooling and the direct causes of exhumation were unresolved. This work combines the original AFT data with 98 apatite new (U-Th)/He ages from 16 samples and applies the newly developed ‘broken crystals’ technique to provide a greater number of thermal constraints for thermal history modelling to better constrain the topographic evolution. The spatial distribution of AFT and AHe ages implies exhumation has been significant toward the SE (Labrador) coastline, while results of thermal modelling outline three notable periods of cooling in the pre-rift (460 Ma – 200 Ma), from syn-rift to present (120 Ma – 0 Ma) and within post-rift (30 Ma – 0 Ma) stages. Pre-rift cooling is interpreted as the result of exhumation of Laurentia, syn-rift cooling as the result of rift flank uplift to the SE and differential erosion of landscape, while the final post-rift period is likely an artefact of the modelling process. These results suggest the source of the Cumberland Peninsula's modern-day elevated topography is uplift during rifting in the Cretaceous and the isostatic compensation following continuous Mesozoic and Cenozoic differential erosion. This work highlights the how interaction of rift tectonics and isostasy can be the principal source for modern elevated continental margins, while also providing insight into the pre-rift exhumational history of central Laurentia.〈strong〉Supplementary material:〈/strong〉〈a href="https://doi.org/10.6084/m9.figshare.c.4528409"〉https://doi.org/10.6084/m9.figshare.c.4528409〈/a〉〈/span〉
    Print ISSN: 0370-291X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019
    Description: 〈span〉〈div〉Abstract〈/div〉Elevated topography is evident across the continental margins of the Atlantic. The Cumberland Peninsula, Baffin Island, formed as the result of rifting along the Labrador–Baffin margins in the late Mesozoic and is dominated by low-relief high-elevation topography. Apatite fission-track (AFT) analysis of the landscape previously concluded that the area has experienced a differential protracted cooling regime since the Devonian; however, defined periods of cooling and the direct causes of exhumation were unresolved. This work combines the original AFT data with 98 apatite new (U–Th)/He (AHe) ages from 16 samples and applies the newly developed ‘broken crystals’ technique to provide a greater number of thermal constraints for thermal history modelling to better constrain the topographic evolution. The spatial distribution of AFT and AHe ages implies that exhumation has been significant toward the SE (Labrador) coastline, and results of thermal modelling outline three notable periods of cooling: in the pre-rift stage (460–200 Ma), from synrift stage to present (120–0 Ma) and within the post-rift stage (30–0 Ma). Pre-rift cooling is interpreted as the result of exhumation of Laurentia and synrift cooling as the result of rift-flank uplift to the SE and differential erosion of landscape, whereas the final post-rift period is probably an artefact of the modelling process. These results suggest that the source of the Cumberland Peninsula's modern-day elevated topography is uplift during rifting in the Cretaceous and the isostatic compensation following continuous Mesozoic and Cenozoic differential erosion. This work highlights how interaction of rift tectonics and isostasy can be the principal source for modern elevated continental margins, and also provides insight into the pre-rift exhumational history of central Laurentia.〈strong〉Supplementary material:〈/strong〉 Thermal histories are available at: 〈a href="https://doi.org/10.6084/m9.figshare.c.4528409"〉https://doi.org/10.6084/m9.figshare.c.4528409〈/a〉〈/span〉
    Print ISSN: 0370-291X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019
    Description: 〈span〉〈div〉Abstract〈/div〉At the 2015 United Nations International Climate Change Conference in Paris (COP21), 197 national parties committed to limit global warming to well below 2°C. But current plans and pace of progress are still far from sufficient to achieve this objective. Here we review the role that geoscience and the subsurface could play in decarbonizing electricity production, industry, transport and heating to meet UK and international climate change targets, based on contributions to the 2019 Bryan Lovell meeting held at the Geological Society of London. Technologies discussed at the meeting involved decarbonization of electricity production via renewable sources of power generation, substitution of domestic heating using geothermal energy, use of carbon capture and storage (CCS), and more ambitious technologies such as bioenergy and carbon capture and storage (BECCS) that target negative emissions. It was noted also that growth in renewable energy supply will lead to increased demand for geological materials to sustain the electrification of the vehicle fleet and other low-carbon technologies. The overall conclusion reached at the 2019 Bryan Lovell meeting was that geoscience is critical to decarbonization, but that the geoscience community must influence decision-makers so that the value of the subsurface to decarbonization is understood.〈/span〉
    Print ISSN: 1354-0793
    Electronic ISSN: 2041-496X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-02-01
    Print ISSN: 1464-343X
    Electronic ISSN: 1879-1956
    Topics: Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-11-01
    Print ISSN: 0012-8252
    Electronic ISSN: 1872-6828
    Topics: Geography , Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...