ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI Publishing  (14)
  • Wiley  (8)
  • Institute of Physics  (7)
  • American Association for the Advancement of Science  (5)
  • BioMed Central  (2)
  • 2015-2019  (36)
  • 2000-2004
  • 2017  (36)
Collection
Years
  • 2015-2019  (36)
  • 2000-2004
Year
  • 1
    Publication Date: 2017-08-29
    Description: IJERPH, Vol. 14, Pages 970: Occurrence, Distribution, and Risk Assessment of Perfluoroalkyl Acids (PFAAs) in Muscle and Liver of Cattle in Xinjiang, China International Journal of Environmental Research and Public Health doi: 10.3390/ijerph14090970 Authors: Gehui Wang Jianjiang Lu Zhenni Xing Shanman Li Zilong Liu Yanbin Tong Despite risks associated with perfluoroalkyl acids (PFAAs) in many regions, little is known about their prevalence in Xinjiang. We determined the presence of 13 PFAAs in 293 beef muscle and liver samples collected in 22 cities covering northern, southern, and eastern Xinjiang using liquid chromatography, coupled with tandem mass spectrometry. Overall, the average values for PFAAs were relatively low compared with previous studies. Liver presented higher mean levels of total PFAAs at 1.632 ng/g, which was over 60-fold higher than in muscle (0.026 ng/g). Among the PFAAs analyzed, medium-chain compounds were dominant, accounting for more than 70% of the total. Perfluorooctane sulfonate (PFOS) was highly prevalent in the liver with the highest mean concentration (0.617 ng/g) and detection frequency (80%). When comparing the three regions of Xinjiang, we found differences in PFAA profiles, with the northern region showing the highest levels. Furthermore, the average daily intake and hazard ratios of PFOS and perfluorooctanoic acid varied by region, urban/rural environment, gender, ethnicity, and age. The highest risk value of 13 PFAAs was estimated to be 0.837 × 10−3, which is far below 1, indicating that there is no health risk posed by eating beef muscle and liver in Xinjiang.
    Print ISSN: 1661-7827
    Electronic ISSN: 1660-4601
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-08-29
    Description: Sensors, Vol. 17, Pages 1973: A Portable Impedance Immunosensing System for Rapid Detection of Salmonella Typhimurium Sensors doi: 10.3390/s17091973 Authors: Tao Wen Ronghui Wang America Sotero Yanbin Li Salmonella Typhimurium is one of the most dangerous foodborne pathogens and poses a significant threat to human health. The objective of this study was to develop a portable impedance immunosensing system for rapid and sensitive detection of S. Typhimurium in poultry. The developed portable impedance immunosensing system consisted of a gold interdigitated array microelectrode (IDAM), a signal acquisitive interface and a laptop computer with LabVIEW software. The IDAM was first functionalized with 16-Mercaptohexadecanoic acid, and streptavidin was immobilized onto the electrode surface through covalent bonding. Then, biotin-labelled S. Typhimurium-antibody was immobilized onto the IDAM surface. Samples were dropped on the surface of the IDAM and the S. Typhimurium cells in the samples were captured by the antibody on the IDAM. This resulted in impedance changes that were measured and displayed with the LabVIEW software. An equivalent circuit of the immunosensor demonstrated that the largest change in impedance was due to the electron-transfer resistance. The equivalent circuit showed an increase of 35% for the electron-transfer resistance value compared to the negative control. The calibration result indicated that the portable impedance immunosensing system could be used to measure the standard impedance elements, and it had a maximum error of measurement of approximately 13%. For pure culture detection, the system had a linear relationship between the impedance change and the logarithmic value of S. Typhimurium cells ranging from 76 to 7.6 × 106 CFU (colony-forming unit) (50 μL)−1. The immunosensor also had a correlation coefficient of 0.98, and a high specificity for detection of S. Typhimurium cells with a limit of detection (LOD) of 102 CFU (50 μL)−1. The detection time from the moment a sample was introduced to the display of the results was 1 h. To conclude, the portable impedance immunosensing system for detection of S. Typhimurium achieved an LOD that is comparable with commercial electrochemical impedance instruments. The developed impedance immunosensor has advantages in portability, low cost, rapid detection and label-free features showing a great potential for in-field detection of foodborne pathogens.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-09-01
    Description: The relationships between cover and AGB for the dominant and widely distributed alpine grasslands on the northern Tibetan Plateau is still not fully examined. The objectives of this study are to answer the following question: (1) How does aboveground biomass (AGB) of alpine grassland relate to plant cover at different spatial scales? (2) What are the major biotic and abiotic factors influencing on AGB–cover relationship? A community survey (species, cover, height, and abundance) was conducted within 1 m × 1 m plots in 70 sites along a precipitation gradient of 50–600 m. Ordinary linear regression was employed to examine AGB–cover relationships of both community and species levels at regional scale of entire grassland and landscape scale of alpine meadow, alpine steppe, and desert steppe. Hierarchical partitioning was employed to estimate independent contributions of biotic and abiotic factors to AGB and cover at both scales. Partial correlation analyses were used to discriminate the effects of biotic and abiotic factors on AGB–cover relationships at two spatial scales. AGB and community cover both exponentially increased along the precipitation gradient. At community level, AGB was positively and linearly correlated with cover for all grasslands except for alpine meadow. AGB was also linearly correlated with cover of species level at both regional and landscape scales. Contributions of biotic and abiotic factors to the relationship between AGB and cover significantly depended on spatial scales. Cover of cushions, forbs, legumes and sedges, species richness, MAP, and soil bulk density were important factors that influenced the AGB–cover relationship at either regional or landscape scale. This study indicated generally positive and linear relationships between AGB and cover are at both regional and landscape scales. Spatial scale may affect ranges of cover and modify the contribution of cover to AGB. AGB–cover relationships were influenced mainly by species composition of different functional groups. Therefore, in deriving AGB patterns at different spatial scales, community composition should be considered to obtain acceptable accuracy. This study indicated generally positive and linear relationships between AGB and cover are at both regional and landscape scales, and suggested that in deriving AGB patterns at different spatial scales, community composition and related environmental factors should be considered to obtain acceptable accuracy.
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-09-16
    Description: Materials, Vol. 10, Pages 1091: Effects of Pulse Parameters on Weld Microstructure and Mechanical Properties of Extra Pulse Current Aided Laser Welded 2219 Aluminum Alloy Joints Materials doi: 10.3390/ma10091091 Authors: Xinge Zhang Liqun Li Yanbin Chen Zhaojun Yang Yanli Chen Xinjian Guo In order to expand the application range of laser welding and improve weld quality, an extra pulse current was used to aid laser-welded 2219 aluminum alloy, and the effects of pulse current parameters on the weld microstructure and mechanical properties were investigated. The effect mechanisms of the pulse current interactions with the weld pool were evaluated. The results indicated that the coarse dendritic structure in the weld zone changed to a fine equiaxed structure using an extra pulse current, and the pulse parameters, including medium peak current, relatively high pulse frequency, and low pulse duty ratio benefited to improving the weld structure. The effect mechanisms of the pulse current were mainly ascribed to the magnetic pinch effect, thermal effect, and electromigration effect caused by the pulse current. The effect of the pulse parameters on the mechanical properties of welded joints were consistent with that of the weld microstructure. The tensile strength and elongation of the optimal pulse current-aided laser-welded joint increased by 16.4% and 105%, respectively, compared with autogenous laser welding.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-08-19
    Description: Minerals, Vol. 7, Pages 151: Vertical Heterogeneity of the Shale Reservoir in the Lower Silurian Longmaxi Formation: Analogy between the Southeastern and Northeastern Sichuan Basin, SW China Minerals doi: 10.3390/min7080151 Authors: Jun Liu Yanbin Yao Derek Elsworth Dameng Liu Yidong Cai Li Dong Lower Silurian Longmaxi formation (LSL) shale is widely and continuously distributed in the northeastern Sichuan Basin and, based on structural analogies with the gas producing LSL formation in the southeastern Sichuan Basin, has significant potential for shale gas exploration. However, limited research has been performed to evaluate the shale gas potential in this region. Samples from a recently completed exploratory well (Well-WQ2) in the northeastern Sichuan Basin indicate that the LSL shale has a vertical property sequence that closely resembles the vertical property sequences in wells in the gas-producing sections of the southeastern Sichuan Basin. The continuous sampling and analyses of Well-WQ2 have allowed a detailed investigation of the vertical variations in lithofacies, mineral characteristics, pore structures, and organic geochemical characteristics. The Longmaxi formation was divided into two third-order sequences (SQ1 and SQ2) based on systematic core observations and well logging analyses. Both SQ1 and SQ2 include a transgressive system tract (TST) and a high-stand system tract (HST). The lithofacies exhibit an upward decrease in the organic content. From SQ1 to SQ2, the quartz content, in situ graptolite content, total organic carbon (TOC) content, and brittleness index decrease, but the clay mineral content increases. The LSL shale sections from depths of 1204 to 1214 m and from 1271 to 1282 m possess well-developed fractures and high permeability. Additionally, the average porosity and permeability in SQ1 are higher than those in SQ2. In addition, the positive correlation between the TOC and quartz contents of the assayed samples suggests that much of the quartz is of biogenic origin. Changes in the sedimentary and diagenetic environments during deposition are two key factors that contribute to the observed vertical heterogeneity of the Longmaxi formation. In conclusion, the shale sections of the lower part of the SQ1, like their analogs in the southeastern Sichuan Basin, are the most favorable targets for shale gas production in the northeastern Sichuan Basin.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-06-05
    Description: Peatlands play an important role in the global carbon cycle and potentially have a significant impact on regional climate change. Restoring and rewetting the degraded peatlands is an urgent task. However, effects of rewetting on the carbon emissions of peatlands remain poorly understood. In this study, the process of rewetting a piece of the degraded Zoige alpine peatland was experimentally simulated and the derived results were compared with those of natural rewetting by monitoring CO2 and CH4 fluxes and other environmental factors before and after rewetting. The natural rewetting results showed that rewetting decreased ecosystem respiration (ER) by about 60%. Furthermore, rewetting increased CH4 emissions by 127%, decreased total carbon emissions (TCE) from 270 to 157 mg CO2 m−2 h−1, and decreased TCE from the entire ecosystem by 42%. The results of the controlled experiment showed that ER decreased gradually as the degree of rewetting was increased, and CH4 fluxes and changes in water level were significantly and positively correlated: CH4 fluxes increased from 0.3 (water level −20 cm) to 2.17 mg CH4 m−2 h−1 (water level 20 cm). After rewetting, the TCE of the whole ecosystem were significantly decreased. Regional observations showed that CO2 fluxes were significantly and negatively correlated to the water level; and the corresponding CO2 equivalent was significantly and positively correlated to the water level, while TCE were significantly and negatively correlated to the water level. Our findings indicate that rewetting can decrease carbon emissions and thus contribute in mitigating the adverse effects of climate change in alpine peatland.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-06-17
    Description: An accurate initial alignment must be required for inertial navigation system (INS). The performance of initial alignment directly affects the following navigation accuracy. However, the rapid convergence of meridians and the small horizontalcomponent of rotation of Earth make the traditional alignment methods ineffective in polar regions. In this paper, from the perspective of global inertial navigation, a novel alignment algorithm based on pseudo-Earth frame and backward process is proposed to implement the initial alignment in polar regions. Considering that an accurate coarse alignment of azimuth is difficult to obtain in polar regions, the dynamic error modeling with large azimuth misalignment angle is designed. At the end of alignment phase, the strapdown attitude matrix relative to local geographic frame is obtained without influence of position errors and cumbersome computation. As a result, it would be more convenient to access the following polar navigation system. Then, it is also expected to unify the polar alignment algorithm as much as possible, thereby further unifying the form of external reference information. Finally, semi-physical static simulation and in-motion tests with large azimuth misalignment angle assisted by unscented Kalman filter (UKF) validate the effectiveness of the proposed method.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-10-13
    Description: ABSTRACT Effects of climate change on vegetation greenness have attracted considerable attention in the context of global change; however, the dependence of such climatic effects on elevation remains poorly understood. In this study, we examine the relationship between vegetation greenness change and climate change and, in particular, characterize how this relationship changes with elevation in the high mountains of southwest China by using the remotely sensed normalized difference vegetation index (NDVI), and observed temperature and precipitation data sets for the period of 1982–2013. The results show that vegetation exhibited a greening trend (slope: 0.0008 year −1 , p  〈 0.01) under climate warming (slope: 0.04 °C year −1 , p  〈 0.01) and drying (slope: −2.47 mm year −1 , p  〉 0.05). The vegetation greening and climate warming trends were stronger in the higher elevation plateaus than in the lower elevation mountains. Statistical analysis showed that temperature was the main driving factor on vegetation greening, and the driving effect was elevation-dependent. A substantially more significant correlation between climate warming and vegetation greening was found in the higher elevation plateaus, which reveals a higher temperature sensitivity of these plateaus. In addition, a significant correlation between inter-annual standard deviations of NDVI and precipitation during 1982–2013 was tracked over the entire study area. Map of the high mountains of southwest China showing the elevation pattern, landform distributions (a) and different vegetation types (b). The simple hatch indicates elevation below 1000 m above sea level.
    Print ISSN: 0899-8418
    Electronic ISSN: 1097-0088
    Topics: Geosciences , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-09-27
    Description: Minerals, Vol. 7, Pages 179: Comparison of Three Key Marine Shale Reservoirs in the Southeastern Margin of the Sichuan Basin, SW China Minerals doi: 10.3390/min7100179 Authors: Jun Liu Yanbin Yao Dameng Liu Zhejun Pan Yidong Cai This study performs a comprehensive comparison of three key marine shale reservoirs in the southeastern margin of the Sichuan Basin, and explains why commercial gas production was only achieved in the Lower Silurian Longmaxi (LSL) and Upper Ordovician Wufeng (UOW) formations, but not in the Lower Cambrian Niutitang (LCN) formation. The experimental methods included in situ gas content and gas composition tests, methane adsorption analysis, low-pressure N2 adsorption, field emission scanning electron microscopy (FE-SEM), and total organic carbon (TOC) and vitrinite reflectance (Ro) analyses to evaluate the lithology, mineralogy, physical properties of the reservoir, organic geochemistry, in situ gas content and methane adsorption capacity characteristics of the three shales. The LCN shale has lower quartz and clay mineral contents and a low brittleness index, but higher contents of feldspar, pyrite and carbonate minerals than the LSL and UOW shales. The porosity and permeability of the LSL and UOW shales are higher than those of the LCN shale. The primary contributions to the high permeability in the LSL shale are its well-developed fractures and organic matter pores. In contrast, the over-mature LCN shale is unfavorable for the development of organic pores and fractures. Although the LCN shale has a higher methane sorption capacity than the LSL and UOW shales, the gas content and methane saturation of the LCN shale are distinctly lower than those of the LSL and UOW shales. This is primarily due to gas migration from the LCN shale, resulting from the activities of tectonic uplift and the unconformable contact between the LCN shale and the Dengying formation. When compared with gas shale in North America, the LSL shale is the most favorable shale reservoir out of the three Sichuan shales, while the combination of the LSL and UOW shales is also potentially productive. However, the individual single layer production of the UOW or LCN shales is still limited due to poor resource potential and/or reservoir physical characteristics in the study area.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-11-28
    Description: Sensors, Vol. 17, Pages 2742: Dynamic Obstacle Avoidance for Unmanned Underwater Vehicles Based on an Improved Velocity Obstacle Method Sensors doi: 10.3390/s17122742 Authors: Wei Zhang Shilin Wei Yanbin Teng Jianku Zhang Xiufang Wang Zheping Yan In view of a dynamic obstacle environment with motion uncertainty, we present a dynamic collision avoidance method based on the collision risk assessment and improved velocity obstacle method. First, through the fusion optimization of forward-looking sonar data, the redundancy of the data is reduced and the position, size and velocity information of the obstacles are obtained, which can provide an accurate decision-making basis for next-step collision avoidance. Second, according to minimum meeting time and the minimum distance between the obstacle and unmanned underwater vehicle (UUV), this paper establishes the collision risk assessment model, and screens key obstacles to avoid collision. Finally, the optimization objective function is established based on the improved velocity obstacle method, and a UUV motion characteristic is used to calculate the reachable velocity sets. The optimal collision speed of UUV is searched in velocity space. The corresponding heading and speed commands are calculated, and outputted to the motion control module. The above is the complete dynamic obstacle avoidance process. The simulation results show that the proposed method can obtain a better collision avoidance effect in the dynamic environment, and has good adaptability to the unknown dynamic environment.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...