ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: We conduct a multi-wavelength continuum variability study of the Seyfert 1 galaxy NGC 5548 to investigate the temperature structure of its accretion disk. The 19 overlapping continuum light curves (1158 Angstrom to 9157 Angstrom) combine simultaneous Hubble Space Telescope, Swift, and ground-based observations over a 180 day period from 2014 January to July. Light-curve variability is interpreted as the reverberation response of the accretion disk to irradiation by a central time-varying point source. Our model yields the disk inclination i = 36deg +/- 10deg, temperature T(sub 1) = (44+/-6) times 10 (exp 3)K at 1 light day from the black hole, and a temperature radius slope (T proportional to r (exp -alpha)) of alpha = 0.99 +/- 0.03. We also infer the driving light curve and find that it correlates poorly with both the hard and soft X-ray light curves, suggesting that the X-rays alone may not drive the ultraviolet and optical variability over the observing period. We also decompose the light curves into bright, faint, and mean accretion-disk spectra. These spectra lie below that expected for a standard blackbody accretion disk accreting at L/L(sub Edd) = 0.1.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN44055 , The Astrophysical Journal (ISSN 2041-8205) (e-ISSN 2041-8213); 835; 1; 65
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The XXL survey currently covers two 25 deg2 patches with XMM observations of approximately 10 ks. We summarize the scientific results associated with the first release of the XXL dataset, which occurred in mid-2016.We review several arguments for increasing the survey depth to 40 ks during the next decade of XMM operations. X-ray(zeta less than 2) cluster, (zeta less than 4) active galactic nuclei (AGN), and cosmic background survey science will then benefit from an extraordinary data reservoir. This, combined with deep multi-lambda observations, will lead to solid standalone cosmological constraints and provide a wealth of information on the formation and evolution of AGN, clusters, and the X-ray background. In particular, it will offer a unique opportunity to pinpoint the zeta greater than1 cluster density. It will eventually constitute a reference study and an ideal calibration field for the upcoming eROSITA and Euclid missions.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN47027 , Astronomical Notes (ISSN 0004-6337) (e-ISSN 1521-3994); 338; 3-Feb; 334–341
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-05-02
    Description: We report the identification of a bright hard X-ray source dominating the M31 bulge above 25 keV from a simultaneous NuSTAR-Swift observation. We find that this source is the counterpart to Swift J0042.6+4112, which was previously detected in the Swift BAT All-Sky Hard X-Ray Survey. This Swift BAT source had been suggested to be the combined emission from a number of point sources; our new observations have identified a single X-ray source from 0.5 to 50 keV as the counterpart for the first time. In the 0.5-10 keV band, the source had been classified as an X-ray Binary candidate in various Chandra and XMM-Newton studies; however, since it was not clearly associated with Swift J0042.6+4112, the previous E is less than 10keVobservations did not generate much attention. This source has a spectrum with a soft X-ray excess (kT approximately equal to 0.2 keV) plus a hard spectrum with a power law of gamma approximately equal to 1 and a cutoff around 15-20 keV, typical of the spectral characteristics of accreting pulsars. Unfortunately, any potential pulsation was undetected in the NuSTAR data, possibly due to insufficient photon statistics. The existing deep HST (Hubble Space Telescope) images exclude high-mass (greater than 3 times the radius of the moon) donors at the location of this source. The best interpretation for the nature of this source is an X-ray pulsar with an intermediate-mass (less than 3 times the radius of the moon M) companion or a symbiotic X-ray binary. We discuss other possibilities in more detail.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN41428 , The Astrophysical Journal (ISSN 0004-637X; e-ISSN 1538-4357); Volume 838; No. 1; 47
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: We present results from four new broadband X-ray observations of the extreme ultraluminous X-ray source Holmberg IX X-1 (L (sub X) greater than 10 (sup 40) ergs per second), performed by Suzaku and NuSTAR in coordination. Combined with the archival data, we now have broadband observations of this remarkable source from six separate epochs. Two of these new observations probe lower fluxes than seen previously, allowing us to extend our knowledge of the broadband spectral variability exhibited. The spectra are well fit by two thermal blackbody components that dominate the emission below 10 kiloelectronvolts, as well as a steep (Gamma approximately equal to 3.5) power-law tail thatdominates above approximately 15 kiloelectronvolts. Remarkably, while the 0.3-10.0 kiloelectronvolts flux varies by a factor of approximately 3 between all these epochs, the 15-40 kiloelectronvolts flux varies by only approximately 20 percent. Although the spectral variability is strongest in the approximately 1-10 kiloelectronvolts band, both of the thermal components are required to vary when all epochs are considered. We also revisit the search for iron absorption features by leveraging the high-energy NuSTAR data to improve our sensitivity to extreme velocity outflows in light of the ultra-fast outflow recently detected in NGC 1313 X-1. Iron absorption from a similar outflow along our line of sight can be ruled out in this case. We discuss these results in the context of super-Eddington accretion models that invoke a funnel-like geometry for the inner flow, and propose a scenario in which we have an almost face-on view of a funnel that expands to larger radii with increasing flux, resulting in an increasing degree of geometrical collimation for the emission from intermediate-temperature regions.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN46238 , Astrophysical Journal (ISSN 2041-8205) (e-ISSN 2041-8213); 839; 2; 105
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Quantum electrodynamics in very strong Coulomb fields is one scope which has not yet been tested experimentally with sufficient accuracy to really determine whether the perturbative approach is valid. One sensitive test is the determination of the 1s Lamb shift in highly-charged very heavy ions. The 1s Lamb shift of hydrogen-like lead (Pb81+) and gold (Au78+) has been determined using the novel detector concept of silicon microcalorimeters for the detection of hard x-rays. The results of (260 +/- 53) eV for lead and (211 +/- 42) eV for gold are within the error bars in good agreement with theoretical predictions. To our knowledge, for hydrogen-like lead, this represents the most accurate determination of the 1s Lamb shift.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN46237 , Journal of Physics B: Atomic, Molecular and Optical Physics (ISSN 0953-4075) (e-ISSN 1361-6455); 50; 5; 055603
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Context. X-ray spectra of accreting pulsars are generally observed to vary with their X-ray luminosity. In particular, the hardness of the X-ray continuum is found to depend on luminosity. In a few sources, the correlation between the energy of the cyclotron resonance scattering feature (CRSF) and the luminosity is clear. Different types (signs) of the correlation are believed to reflect different accretion modes. Aims. We analyse two NuSTAR observations of the transient accreting pulsar Cep X-4 during its 2014 outburst. Our analysis is focused on a detailed investigation of the dependence of the CRSF energy and of the spectral hardness on X-ray luminosity, especially on short timescales. Methods. To investigate the spectral changes as a function of luminosity within each of the two observations, we used the intrinsic variability of the source on the timescale of individual pulse cycles (tens of seconds), the so-called pulse-to-pulse variability. Results. We find that the NuSTAR spectrum of Cep X-4 contains two CRSFs: the fundamental line at ~30 keV and its harmonic at ~55 keV. We find for the first time that the energy of the fundamental CRSF increases and the continuum becomes harder with increasing X-ray luminosity not only between the two observations, that is, on the long timescale, but also within an individual observation, on the timescale of a few tens of seconds. We investigate these dependencies in detail including their non-linearity. We discuss a possible physical interpretation of the observed behaviour in the frame of a simple one-dimensional model of the polar emitting region with a collisionless shock formed in the infalling plasma near the neutron star surface. With this model, we are able to reproduce the observed variations of the continuum hardness ratio and of the CRSF energy with luminosity.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN60579 , Astronomy & Astrophysics (ISSN 0004-6361) (e-ISSN 1432-0746); 601; A126
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: We report the identification of a bright hard X-ray source dominating the M31 bulge above 25 keV from a simultaneous NuSTAR-Swift observation. We find that this source is the counterpart to Swift J0042.6+4112, which was previously detected in the Swift BAT All-sky Hard X-ray Survey. This Swift BAT source had been suggested to be the combined emission from a number of point sources; our new observations have identified a single X-ray source from 0.5 to 50 keV as the counterpart for the first time. In the 0.5-10 keV band, the source had been classified as an X-ray Binary candidate in various Chandra and XMM-Newton studies; however, since it was not clearly associated with Swift J0042.6+4112, the previous E〈10 keV observations did not generate much attention. This source has a spectrum with a soft X-ray excess (kT 0.2 keV) plus a hard spectrum with a power law of G ~ 1 and a cutoff around 15-20 keV, typical of the spectral characteristics of accreting pulsars. Unfortunately, any potential pulsation was undetected in the NuSTAR data, possibly due to insufficient photon statistics. The existing deep HST images exclude high-mass (〉3 solar mass) donors at the location of this source. The best interpretation for the nature of this source is an X-ray pulsar with an intermediate-mass (〈3 solar mass) companion or a symbiotic X-ray binary. We discuss other possibilities in more detail.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN60569 , The Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 838; 1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: In 2016 September, the microquasar Cygnus X-3 underwent a giant radio flare, which was monitored for 6 d with the Medicina Radio Astronomical Station and the Sardinia Radio Telescope. Long observations were performed in order to follow the evolution of the flare on an hourly scale, covering six frequency ranges from 1.5 to 25.6 GHz. The radio emission reached a maximum of 13.2 +/- 0.7 Jy at 7.2 GHz and 10 +/- 1 Jy at 18.6 GHz. Rapid flux variations were observed at high radio frequencies at the peak of the flare, together with rapid evolution of the spectral index: steepened from 0.3 to 0.6 (with S ) within 5 h. This is the first time that such fast variations are observed, giving support to the evolution from optically thick to optically thin plasmons in expansion moving outward from the core. Based on the Italian network (Noto, Medicina and SRT) and extended to the European antennas (Torun, Yebes, Onsala), very long baseline interferometry (VLBI) observations were triggered at 22 GHz on five different occasions, four times prior to the giant flare, and once during its decay phase. Flux variations of 2 h duration were recorded during the first session. They correspond to a mini-flare that occurred close to the core 10 d before the onset of the giant flare. From the latest VLBI observation we infer that 4 d after the flare peak the jet emission was extended over 30 mas.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN60523 , Monthly Notices of the Royal Astronomical Society (ISSN 0035-8711) (e-ISSN 1365-2966); 471; 3; 2703-2714
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Bright and eclipsing, the high-mass X-ray binary Vela X-1 offers a unique opportunity to study accretion onto a neutron star from clumpy winds of O/B stars and to disentangle the complex accretion geometry of these systems. In Chandra-HETGS spectroscopy at orbital phase approximately 0.25, when our line of sight towards the source does not pass through the large-scale accretion structure such as the accretion wake, we observe changes in overall spectral shape on timescales of a few kiloseconds. This spectral variability is, at least in part, caused by changes in overall absorption and we show that such strongly variable absorption cannot be caused by unperturbed clumpy winds of O/B stars. We detect line features from high and low ionization species of silicon, magnesium, and neon whose strengths and presence depend on the overall level of absorption. These features imply a co-existence of cool and hot gas phases in the system, which we interpret as a highly variable, structured accretion flow close to the compact object such as has been recently seen in simulations of wind accretion in high-mass X-ray binaries.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN59935 , Astronomy & Astrophysics (ISSN 0004-6361) (e-ISSN 2197-3504); 608; A143
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: A search for the progenitor of SN 2010jl, an unusually luminous core-collapse supernova of Type IIn, using pre-explosion Hubble/WFPC2 and Spitzer/IRAC images of the region, yielded upper limits on the UV and near infrared (IR) fluxes from any candidate star. These upper limits constrain the luminosity and effective temperature of the progenitor, the mass of any pre-existing dust in its surrounding circumstellar medium (CSM), and dust proximity to the star. A lower limit on the CSM dust mass is required to hide a luminous progenitor from detection by Hubble. Upper limits on the CSM dust mass and constraints on its proximity to the star are set by requiring that the absorbed and reradiated IR emission not exceed the IRAC upper limits. Using the combined extinction-IR emission constraints, we present viable M(sub d)-R(sub 1) combinations, where M(sub d) and R(sub 1) are the CSM dust mass and its inner radius. These depend on the CSM outer radius, dust composition and grain size, and the properties of the progenitor. The results constrain the pre-supernova evolution of the progenitor, and the nature and origin of the observed post-explosion IR emission from SN 2010jl. In particular, an eta Car-type progenitor will require at least 4 mag of visual extinction to avoid detection by Hubble. This can be achieved with dust masses greater than approximately equal to 10(exp -3) solar mass (less than the estimated 0.2-0.5 solar mass around eta Car), which must be located at distances of greater than approximately equal to 10(exp 16) cm from the star to avoid detection by Spitzer.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN50655 , The Astrophysical Journal (ISSN 2041-8205) (e-ISSN 2041-8213); 847; 2; 91
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...