ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (189)
  • 2015-2019  (189)
  • 2016  (189)
Collection
Language
Years
  • 2015-2019  (189)
Year
  • 1
    Publication Date: 2019-07-13
    Description: Through the miracle of open web mapping services for satellite imagery, a garden of new applications has sprouted to monitor the planet across a variety of domains. The Global Imagery Browse Services (GIBS) provide free and open access to full resolution imagery captured by NASAs Earth observing fleet. Spanning 15+ years and running through as recently as a few hours ago, GIBS aims to provide a general-purpose window into NASA's vast archive of the planet. While the vast nature of this archive can be daunting, many domain-specific applications have been built to meet the needs of their respective communities. This presentation will demonstrate a diverse set of these new applications which can take planetarium visitors into (virtual) orbit, guide fire resource managers to hotspots, help anglers find their next catch, illustrate global air quality patterns to local regulators, and even spur a friendly competition to find clouds which are shaped the most like cats. We hope this garden will continue to grow and will illustrate upcoming upgrades to GIBS which may open new pathways for development. data visualization, web services, open access
    Keywords: Mathematical and Computer Sciences (General)
    Type: GSFC-E-DAA-TN37286 , American Geophyical Union (AGU) Fall Meeting; Dec 12, 2016 - Dec 16, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Astrobiology is the science that seeks to understand the story of life in our universe. Astrobiology includes investigation of the conditions that are necessary for life to emerge and flourish, the origin of life, the ways that life has evolved and adapted to the wide range of environmental conditions here on Earth, the search for life beyond Earth, the habitability of extraterrestrial environments, and consideration of the future of life here on Earth and elsewhere. It therefore requires knowledge of physics, chemistry, biology, and many more specialized scientific areas including astronomy, geology, planetary science, microbiology, atmospheric science, and oceanography. However, astrobiology is more than just a collection of different disciplines. In seeking to understand the full story of life in the Universe in a holistic way, astrobiology asks questions that transcend all these individual scientific subjects. Astrobiological research potentially has much broader consequences than simply scientific discovery, as it includes questions that have been of great interest to human beings for millennia (e.g., are we alone?) and raises issues that could affect the way the human race views and conducts itself as a species (e.g., what are our ethical responsibilities to any life discovered beyond Earth?).
    Keywords: Exobiology
    Type: GSFC-E-DAA-TN40743 , Astrobiology (ISSN 1531-1074) (e-ISSN 1557-8070); 16; 8; 561-653
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The Large Observatory For x-ray Timing (LOFT) is a mission concept which was proposed to ESA as M3 and M4 candidate in the framework of the Cosmic Vision 2015-2025 program. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument and the uniquely large field of view of its wide field monitor, LOFT will be able to study the behaviour of matter in extreme conditions such as the strong gravitational field in the innermost regions close to black holes and neutron stars and the supra-nuclear densities in the interiors of neutron stars. The science payload is based on a Large Area Detector (LAD, is greater than 8m2 effective area, 2-30 keV, 240 eV spectral resolution, 1 degree collimated field of view) and a Wide Field Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g., GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the current technical and programmatic status of the mission.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN44111 , SPIE Astronomical Telescopes + Instrumentation; Jun 26, 2016 - Jul 01, 2016; Edinburgh, Scotland; United Kingdom|Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray; 9905; 99051R
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Detailed knowledge of vegetation structure is required for accurate modelling of terrestrial ecosystems, but direct measurements of the three dimensional distribution of canopy elements, for instance from LiDAR, are not widely available. We investigate the potential for modelling vegetation roughness, a key parameter for climatological models, from directional scattering of visible and near-infrared (NIR) reflectance acquired from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS). We compare our estimates across different tropical forest types to independent measures obtained from: (1) airborne laser scanning (ALS), (2) spaceborne Geoscience Laser Altimeter System (GLAS)/ICESat, and (3) the spaceborne SeaWinds/QSCAT. Our results showed linear correlation between MODIS-derived anisotropy to ALS-derived entropy (r(exp 2)= 0.54, RMSE= 0.11), even in high biomass regions. Significant relationships were also obtained between MODIS-derived anisotropy and GLAS-derived entropy(0.52 less than or equal to r(exp 2) less than or equal to 0.61; p less than 0.05), with similar slopes and offsets found throughout the season, and RMSE between 0.26 and 0.30 (units of entropy). The relationships between the MODIS-derived anisotropy and backscattering measurements (sigma(sup 0)) from SeaWinds/QuikSCAT presented an r(exp 2) of 0.59 and a RMSE of 0.11. We conclude that multi-angular MODIS observations are suitable to extrapolate measures of canopy entropy across different forest types, providing additional estimates of vegetation structure in the Amazon.
    Keywords: Earth Resources and Remote Sensing; Meteorology and Climatology
    Type: GSFC-E-DAA-TN41833 , Internatational Journal of Applied Earth Observation and Geoinformation (ISSN 0303-2434); 52; 580-590
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: eXTP is a science mission designed to study the state of matter under extreme conditions of density, gravity and magnetism. Primary goals are the determination of the equation of state of matter at supra-nuclear density, the measurement of QED effects in highly magnetized star, and the study of accretion in the strong-field regime of gravity. Primary targets include isolated and binary neutron stars, strong magnetic field systems like magnetars, and stellar-mass and supermassive black holes. The mission carries a unique and unprecedented suite of state-of-the-art scientific instruments enabling for the first time ever the simultaneous spectral-timing-polarimetry studies of cosmic sources in the energy range from 0.5-30 keV (and beyond). Key elements of the payload are: the Spectroscopic Focusing Array (SFA) - a set of 11 X-ray optics for a total effective area of approx. 0.9 m(exp. 2) and 0.6 m(exp. 2) at 2 keV and 6 keV respectively, equipped with Silicon Drift Detectors offering less than 180 eV spectral resolution; the Large Area Detector (LAD) - a deployable set of 640 Silicon Drift Detectors, for a total effective area of approx. 3.4 m(exp. 2), between 6 and 10 keV, and spectral resolution better than 250 eV; the Polarimetry Focusing Array (PFA) - a set of 2 X-ray telescope, for a total effective area of 250 cm(exp. 2) at 2 keV, equipped with imaging gas pixel photoelectric polarimeters; the Wide Field Monitor (WFM) - a set of 3 coded mask wide field units, equipped with position-sensitive Silicon Drift Detectors, each covering a 90 degrees x 90 degrees field of view. The eXTP international consortium includes major institutions of the Chinese Academy of Sciences and Universities in China, as well as major institutions in several European countries and the United States. The predecessor of eXTP, the XTP mission concept, has been selected and funded as one of the so-called background missions in the Strategic Priority Space Science Program of the Chinese Academy of Sciences since 2011. The strong European participation has significantly enhanced the scientific capabilities of eXTP. The planned launch date of the mission is earlier than 2025.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN43898 , SPIE Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray Conference 2016; Jun 26, 2016; Edinburgh; United Kingdom|Proceedings of SPIE (ISSN 0277-786X) (e-ISSN 1996-756X); 9905; 99051Q
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Synthetic Aperture Radar (SAR) data have proven to be a very useful source of information for the calibration of flood inundation models. Previous studies have focused on assigning uncertainties to SAR images in order to improve flood forecast systems (e.g. Giustarini et al. (2015) and Stephens et al. (2012)). This paper investigates whether the timing of a SAR acquisition of a flood has an important impact on the calibration of a flood inundation model. As no suitable time series of SAR data exists, we generate a sequence of consistent SAR images through the use of a synthetic framework. This framework uses two available ERS-2 SAR images of the study area, one taken during the flood event of interest, the second taken during a dry reference period. The obtained synthetic observations at different points in time during the flood event are used to calibrate the flood inundation model. The results of this study indicate that the uncertainty of the roughness parameters is lower when the model is calibrated with an image taken before rather than during or after the flood peak. The results also show that the error on the modeled extent is much lower when the model is calibrated with a pre-flood peak image than when calibrated with a near-flood peak or a post-flood peak image. It is concluded that the timing of the SAR image acquisition of the flood has a clear impact on the model calibration and consequently on the precision of the predicted flood extent.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN38723 , Advances in Water Resources (ISSN 0309-1708); 100; 126-138
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: We present optical and near-infrared (NIR) light curves and optical spectra of SN 2013dx, associated with the nearby (redshift 0.145) gamma-ray burst GRB 130702A. The prompt isotropic gamma-ray energy released from GRB 130702A is measured to be E(sub gamma, iso) = 6.4(+1.3/-1.0) x 10(exp 50) erg (1 keV to 10 MeV in the rest frame), placing it intermediate between low-luminosity GRBs like GRB 980425/SN 1998bw and the broader cosmological population. We compare the observed g'r'i'z' light curves of SN 2013dx to a SN 1998bw template, finding that SN 2013dx evolves approx. 20% faster (steeper rise time), with a comparable peak luminosity. Spectroscopically, SN 2013dx resembles other broad-lined SNe Ic, both associated with (SN 2006aj and SN 1998bw) and lacking (SN 1997ef, SN 2007I, and SN 2010ah) gamma-ray emission, with photospheric velocities around peak of approx. 21,000 km/s. We construct a quasi-bolometric (g'r'z'yJ) light curve for SN 2013dx, only the fifth GRB-associated SN with extensive NIR coverage and the third with a bolometric light curve extending beyond (Delta)t 〉 40 days. Together with the measured photospheric velocity, we derive basic explosion parameters using simple analytic models. We infer a Ni-56 mass of M(sub Ni) = 0.37+/- 0.01 Stellar Mass, an ejecta mass of M(sub ej) = 3.1+/- 0.1 Stellar Mass, and a kinetic energy of E(sub K) = (8.2+/- 0.43) x 10(exp 51) erg (statistical uncertainties only), consistent with previous GRB-associated supernovae. When considering the ensemble population of GRB-associated supernovae, we find no correlation between the mass of synthesized Ni-56 and high-energy properties, despite clear predictions from numerical simulations that M(sub Ni) should correlate with the degree of asymmetry. On the other hand, M(sub Ni) clearly correlates with the kinetic energy of the supernova ejecta across a wide range of core-collapse events.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN41686 , The Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 818; 1; 79
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Health effects of air pollution, especially particulate matter (PM), have been widely investigated. However, most of the studies rely on few monitors located in urban areas for short-term assessments, or land use/dispersion modelling for long-term evaluations, again mostly in cities. Recently, the availability of finely resolved satellite data provides an opportunity to estimate daily concentrations of air pollutants over wide spatio-temporal domains. Italy lacks a robust and validated high resolution spatio-temporally resolved model of particulate matter. The complex topography and the air mixture from both natural and anthropogenic sources are great challenges difficult to be addressed. We combined finely resolved data on Aerosol Optical Depth (AOD) from the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm, ground-level PM10measurements, land-use variables and meteorological parameters into a four-stage mixed model framework to derive estimates of daily PM10concentrations at 1-km2 grid over Italy, for the years 2006-2012. We checked performance of our models by applying 10-fold cross-validation (CV) for each year. Our models displayed good fitting, with mean CV-R2=0.65 and little bias (average slope of predicted VS observed PM10=0.99). Out-of-sample predictions were more accurate in Northern Italy (Po valley) and large conurbations (e.g. Rome), for background monitoring stations, and in the winter season. Resulting concentration maps showed highest average PM10levels in specific areas (Po river valley, main industrial and metropolitan areas) with decreasing trends over time. Our daily predictions of PM10concentrations across the whole Italy will allow, for the first time, estimation of long-term and short-term effects of air pollution nationwide, even in areas lacking monitoring data. Copyright 2016 Elsevier Ltd. All rights reserved.
    Keywords: Environment Pollution
    Type: GSFC-E-DAA-TN41837 , Environment International; 99; 234-244
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-05-31
    Description: Recent advances in seafloor and subsurface imaging allow accurately mapping and characterizing the kinematic pattern and the style of deformation of submarine faults with unprecedented detail to better assess seismic and tsunami hazards in coastal areas. The Alboran Sea is a Neogene basin generated by crustal extension associated with the subduction in the Gibraltar Arc. At present, several fault systems absorb part of the strain related to the NW-SE convergence (4-5.5 mm/yr) between the African and Eurasian plates. Consequently, the Alboran Sea shows a significant seismic activity. New high-resolution bathymetric and seismic data reveal the presence of poorly known pervasive fault systems in the central part of the Alboran Sea, the Averroes Fault (AF) and the North Averroes Faults (NAFs). These are secondary fault systems located between two large active faults, the Carboneras and Yusuf/Alboran Ridge faults, and represent a hitherto unrecognized seismogenic potential. The WNW-ESE trending AF and NAFs, which may have evolved since the Lower Pliocene (4.57 Ma), are subvertical right-lateral strike-slip active faults since: a) are offsetting the Quaternary sedimentary units and deforming the seafloor; and b) produce a right-lateral displacement of the northwestern margin of the Alboran Channel and across the Adra Ridge North. Given that the AF and NAFs have formed in a continental crust and that are located in a zone surrounded by some of the main active faults in the Alboran Sea, we postulate that these fault systems have been developed into a distributed dextral strike-slip shear zone with the local bulk shear striking approximately N90º. Considering their surface length they could generate earthquakes with magnitudes (Mw) between 6.3 and 7.2, but reaching 7.6 when AF and Yusuf Fault are linked. The high resolution bathymetry map has allowed us measuring lateral offsets produced by the AF and NAFs. Assuming that these displacements have been accumulated during the last 4.57 Ma, the calculated lateral slip rate for AF is approximately1.5 mm/yr and range between 0.2 and 0.4 mm/yr for the NAFs. Our results evidence the importance of the kinematic and seismogenic characterization of secondary fault systems to better comprehend earthquake and tsunami hazards.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-10-26
    Description: Numerous studies show that increasing species richness leads to higher ecosystem productivity. This effect is often attributed to more efficient portioning of multiple resources in communities with higher numbers of competing species, indicating the role of resource supply and stoichiometry for biodiversity–ecosystem functioning relationships. Here, we merged theory on ecological stoichiometry with a framework of biodiversity–ecosystem functioning to understand how resource use transfers into primary production. We applied a structural equation model to define patterns of diversity–productivity relationships with respect to available resources. Meta-analysis was used to summarize the findings across ecosystem types ranging from aquatic ecosystems to grasslands and forests. As hypothesized, resource supply increased realized productivity and richness, but we found significant differences between ecosystems and study types. Increased richness was associated with increased productivity, although this effect was not seen in experiments. More even communities had lower productivity, indicating that biomass production is often maintained by a few dominant species, and reduced dominance generally reduced ecosystem productivity. This synthesis, which integrates observational and experimental studies in a variety of ecosystems and geographical regions, exposes common patterns and differences in biodiversity–functioning relationships, and increases the mechanistic understanding of changes in ecosystems productivity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...