ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Magnetism  (166)
  • Mice  (58)
  • Semiconductors II: surfaces, interfaces, microstructures, and related topics  (45)
  • 2015-2019  (269)
  • 1955-1959
  • 2016  (269)
  • 1
    Publication Date: 2016-02-26
    Description: Integrated genomic analysis of 456 pancreatic ductal adenocarcinomas identified 32 recurrently mutated genes that aggregate into 10 pathways: KRAS, TGF-beta, WNT, NOTCH, ROBO/SLIT signalling, G1/S transition, SWI-SNF, chromatin modification, DNA repair and RNA processing. Expression analysis defined 4 subtypes: (1) squamous; (2) pancreatic progenitor; (3) immunogenic; and (4) aberrantly differentiated endocrine exocrine (ADEX) that correlate with histopathological characteristics. Squamous tumours are enriched for TP53 and KDM6A mutations, upregulation of the TP63N transcriptional network, hypermethylation of pancreatic endodermal cell-fate determining genes and have a poor prognosis. Pancreatic progenitor tumours preferentially express genes involved in early pancreatic development (FOXA2/3, PDX1 and MNX1). ADEX tumours displayed upregulation of genes that regulate networks involved in KRAS activation, exocrine (NR5A2 and RBPJL), and endocrine differentiation (NEUROD1 and NKX2-2). Immunogenic tumours contained upregulated immune networks including pathways involved in acquired immune suppression. These data infer differences in the molecular evolution of pancreatic cancer subtypes and identify opportunities for therapeutic development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bailey, Peter -- Chang, David K -- Nones, Katia -- Johns, Amber L -- Patch, Ann-Marie -- Gingras, Marie-Claude -- Miller, David K -- Christ, Angelika N -- Bruxner, Tim J C -- Quinn, Michael C -- Nourse, Craig -- Murtaugh, L Charles -- Harliwong, Ivon -- Idrisoglu, Senel -- Manning, Suzanne -- Nourbakhsh, Ehsan -- Wani, Shivangi -- Fink, Lynn -- Holmes, Oliver -- Chin, Venessa -- Anderson, Matthew J -- Kazakoff, Stephen -- Leonard, Conrad -- Newell, Felicity -- Waddell, Nick -- Wood, Scott -- Xu, Qinying -- Wilson, Peter J -- Cloonan, Nicole -- Kassahn, Karin S -- Taylor, Darrin -- Quek, Kelly -- Robertson, Alan -- Pantano, Lorena -- Mincarelli, Laura -- Sanchez, Luis N -- Evers, Lisa -- Wu, Jianmin -- Pinese, Mark -- Cowley, Mark J -- Jones, Marc D -- Colvin, Emily K -- Nagrial, Adnan M -- Humphrey, Emily S -- Chantrill, Lorraine A -- Mawson, Amanda -- Humphris, Jeremy -- Chou, Angela -- Pajic, Marina -- Scarlett, Christopher J -- Pinho, Andreia V -- Giry-Laterriere, Marc -- Rooman, Ilse -- Samra, Jaswinder S -- Kench, James G -- Lovell, Jessica A -- Merrett, Neil D -- Toon, Christopher W -- Epari, Krishna -- Nguyen, Nam Q -- Barbour, Andrew -- Zeps, Nikolajs -- Moran-Jones, Kim -- Jamieson, Nigel B -- Graham, Janet S -- Duthie, Fraser -- Oien, Karin -- Hair, Jane -- Grutzmann, Robert -- Maitra, Anirban -- Iacobuzio-Donahue, Christine A -- Wolfgang, Christopher L -- Morgan, Richard A -- Lawlor, Rita T -- Corbo, Vincenzo -- Bassi, Claudio -- Rusev, Borislav -- Capelli, Paola -- Salvia, Roberto -- Tortora, Giampaolo -- Mukhopadhyay, Debabrata -- Petersen, Gloria M -- Australian Pancreatic Cancer Genome Initiative -- Munzy, Donna M -- Fisher, William E -- Karim, Saadia A -- Eshleman, James R -- Hruban, Ralph H -- Pilarsky, Christian -- Morton, Jennifer P -- Sansom, Owen J -- Scarpa, Aldo -- Musgrove, Elizabeth A -- Bailey, Ulla-Maja Hagbo -- Hofmann, Oliver -- Sutherland, Robert L -- Wheeler, David A -- Gill, Anthony J -- Gibbs, Richard A -- Pearson, John V -- Waddell, Nicola -- Biankin, Andrew V -- Grimmond, Sean M -- 103721/Z/14/Z/Wellcome Trust/United Kingdom -- A12481/Cancer Research UK/United Kingdom -- A18076/Cancer Research UK/United Kingdom -- C29717/A17263/Cancer Research UK/United Kingdom -- England -- Nature. 2016 Mar 3;531(7592):47-52. doi: 10.1038/nature16965. Epub 2016 Feb 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia. ; Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK. ; The Kinghorn Cancer Centre, 370 Victoria St, Darlinghurst, and the Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia. ; Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, New South Wales 2200, Australia. ; South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, New South Wales 2170, Australia. ; QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia. ; Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA. ; Michael DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA. ; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA. ; Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA. ; Genetic and Molecular Pathology, SA Pathology, Adelaide, South Australia 5000, Australia. ; School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5000, Australia. ; Harvard Chan Bioinformatics Core, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA. ; Macarthur Cancer Therapy Centre, Campbelltown Hospital, New South Wales 2560, Australia. ; Department of Pathology. SydPath, St Vincent's Hospital, Sydney, NSW 2010, Australia. ; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, New South Wales 2052, Australia. ; School of Environmental &Life Sciences, University of Newcastle, Ourimbah, New South Wales 2258, Australia. ; Department of Surgery, Royal North Shore Hospital, St Leonards, Sydney, New South Wales 2065, Australia. ; University of Sydney, Sydney, New South Wales 2006, Australia. ; Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown New South Wales 2050, Australia. ; School of Medicine, University of Western Sydney, Penrith, New South Wales 2175, Australia. ; Fiona Stanley Hospital, Robin Warren Drive, Murdoch, Western Australia 6150, Australia. ; Department of Gastroenterology, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia 5000, Australia. ; Department of Surgery, Princess Alexandra Hospital, Ipswich Rd, Woollongabba, Queensland 4102, Australia. ; School of Surgery M507, University of Western Australia, 35 Stirling Hwy, Nedlands 6009, Australia and St John of God Pathology, 12 Salvado Rd, Subiaco, Western Australia 6008, Australia. ; Academic Unit of Surgery, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow G4 OSF, UK. ; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow G31 2ER, UK. ; Department of Medical Oncology, Beatson West of Scotland Cancer Centre, 1053 Great Western Road, Glasgow G12 0YN, UK. ; Department of Pathology, Southern General Hospital, Greater Glasgow &Clyde NHS, Glasgow G51 4TF, UK. ; GGC Bio-repository, Pathology Department, Southern General Hospital, 1345 Govan Road, Glasgow G51 4TY, UK. ; Department of Surgery, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany. ; Departments of Pathology and Translational Molecular Pathology, UT MD Anderson Cancer Center, Houston Texas 77030, USA. ; The David M. Rubenstein Pancreatic Cancer Research Center and Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. ; Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA. ; Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA. ; ARC-Net Applied Research on Cancer Centre, University and Hospital Trust of Verona, Verona 37134, Italy. ; Department of Pathology and Diagnostics, University of Verona, Verona 37134, Italy. ; Department of Surgery, Pancreas Institute, University and Hospital Trust of Verona, Verona 37134, Italy. ; Department of Medical Oncology, Comprehensive Cancer Centre, University and Hospital Trust of Verona, Verona 37134, Italy. ; Mayo Clinic, Rochester, Minnesota 55905, USA. ; Elkins Pancreas Center, Baylor College of Medicine, One Baylor Plaza, MS226, Houston, Texas 77030-3411, USA. ; Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK. ; Institute for Cancer Science, University of Glasgow, Glasgow G12 8QQ, UK. ; University of Melbourne, Parkville, Victoria 3010, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26909576" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Basic Helix-Loop-Helix Transcription Factors/genetics ; Carcinoma, Pancreatic ; Ductal/classification/genetics/immunology/metabolism/pathology ; Cell Line, Tumor ; DNA Methylation ; DNA-Binding Proteins/genetics ; Gene Expression Regulation, Neoplastic ; Gene Regulatory Networks ; Genes, Neoplasm/*genetics ; Genome, Human/*genetics ; *Genomics ; Hepatocyte Nuclear Factor 3-beta/genetics ; Hepatocyte Nuclear Factor 3-gamma/genetics ; Histone Demethylases/genetics ; Homeodomain Proteins/genetics ; Humans ; Mice ; Mutation/*genetics ; Nuclear Proteins/genetics ; Pancreatic Neoplasms/*classification/*genetics/immunology/metabolism/pathology ; Prognosis ; Receptors, Cytoplasmic and Nuclear/genetics ; Survival Analysis ; Trans-Activators/genetics ; Transcription Factors/genetics ; Transcription, Genetic ; Transcriptome ; Tumor Suppressor Protein p53/genetics ; Tumor Suppressor Proteins/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-08-30
    Description: Author(s): T. R. Gao, L. Fang, S. Fackler, S. Maruyama, X. H. Zhang, L. L. Wang, T. Rana, P. Manchanda, A. Kashyap, K. Janicka, A. L. Wysocki, A. T. N’Diaye, E. Arenholz, J. A. Borchers, B. J. Kirby, B. B. Maranville, K. W. Sun, M. J. Kramer, V. P. Antropov, D. D. Johnson, R. Skomski, J. Cui, and I. Takeuchi We demonstrate substantial enhancement in the energy product of MnBi-based magnets by forming robust ferromagnetic exchange coupling between a MnBi layer and a thin CoFe layer in a unique perpendicular coupling configuration, which provides increased resistance to magnetization reversal. The measure… [Phys. Rev. B 94, 060411(R)] Published Mon Aug 29, 2016
    Keywords: Magnetism
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-04-14
    Description: Circadian clocks are fundamental to the biology of most eukaryotes, coordinating behaviour and physiology to resonate with the environmental cycle of day and night through complex networks of clock-controlled genes. A fundamental knowledge gap exists, however, between circadian gene expression cycles and the biochemical mechanisms that ultimately facilitate circadian regulation of cell biology. Here we report circadian rhythms in the intracellular concentration of magnesium ions, [Mg(2+)]i, which act as a cell-autonomous timekeeping component to determine key clock properties both in a human cell line and in a unicellular alga that diverged from each other more than 1 billion years ago. Given the essential role of Mg(2+) as a cofactor for ATP, a functional consequence of [Mg(2+)]i oscillations is dynamic regulation of cellular energy expenditure over the daily cycle. Mechanistically, we find that these rhythms provide bilateral feedback linking rhythmic metabolism to clock-controlled gene expression. The global regulation of nucleotide triphosphate turnover by intracellular Mg(2+) availability has potential to impact upon many of the cell's more than 600 MgATP-dependent enzymes and every cellular system where MgNTP hydrolysis becomes rate limiting. Indeed, we find that circadian control of translation by mTOR is regulated through [Mg(2+)]i oscillations. It will now be important to identify which additional biological processes are subject to this form of regulation in tissues of multicellular organisms such as plants and humans, in the context of health and disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Feeney, Kevin A -- Hansen, Louise L -- Putker, Marrit -- Olivares-Yanez, Consuelo -- Day, Jason -- Eades, Lorna J -- Larrondo, Luis F -- Hoyle, Nathaniel P -- O'Neill, John S -- van Ooijen, Gerben -- 093734/Z/10/Z/Wellcome Trust/United Kingdom -- MC_UP_1201/4/Medical Research Council/United Kingdom -- England -- Nature. 2016 Apr 21;532(7599):375-9. doi: 10.1038/nature17407. Epub 2016 Apr 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory for Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK. ; School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK. ; Millennium Nucleus for Fungal Integrative and Synthetic Biology, Departamento de Genetica Molecular y Microbiologia, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Casilla 114-D, Santiago, Chile. ; Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK. ; School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27074515" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Animals ; Cell Line ; Chlorophyta/cytology/metabolism ; Circadian Clocks/genetics/*physiology ; Circadian Rhythm/genetics/*physiology ; *Energy Metabolism ; Feedback, Physiological ; Gene Expression Regulation ; Humans ; Intracellular Space/metabolism ; Magnesium/*metabolism ; Male ; Mice ; TOR Serine-Threonine Kinases/metabolism ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-03-17
    Description: CD8(+) T cells have a central role in antitumour immunity, but their activity is suppressed in the tumour microenvironment. Reactivating the cytotoxicity of CD8(+) T cells is of great clinical interest in cancer immunotherapy. Here we report a new mechanism by which the antitumour response of mouse CD8(+) T cells can be potentiated by modulating cholesterol metabolism. Inhibiting cholesterol esterification in T cells by genetic ablation or pharmacological inhibition of ACAT1, a key cholesterol esterification enzyme, led to potentiated effector function and enhanced proliferation of CD8(+) but not CD4(+) T cells. This is due to the increase in the plasma membrane cholesterol level of CD8(+) T cells, which causes enhanced T-cell receptor clustering and signalling as well as more efficient formation of the immunological synapse. ACAT1-deficient CD8(+) T cells were better than wild-type CD8(+) T cells at controlling melanoma growth and metastasis in mice. We used the ACAT inhibitor avasimibe, which was previously tested in clinical trials for treating atherosclerosis and showed a good human safety profile, to treat melanoma in mice and observed a good antitumour effect. A combined therapy of avasimibe plus an anti-PD-1 antibody showed better efficacy than monotherapies in controlling tumour progression. ACAT1, an established target for atherosclerosis, is therefore also a potential target for cancer immunotherapy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4851431/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4851431/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, Wei -- Bai, Yibing -- Xiong, Ying -- Zhang, Jin -- Chen, Shuokai -- Zheng, Xiaojun -- Meng, Xiangbo -- Li, Lunyi -- Wang, Jing -- Xu, Chenguang -- Yan, Chengsong -- Wang, Lijuan -- Chang, Catharine C Y -- Chang, Ta-Yuan -- Zhang, Ti -- Zhou, Penghui -- Song, Bao-Liang -- Liu, Wanli -- Sun, Shao-cong -- Liu, Xiaolong -- Li, Bo-liang -- Xu, Chenqi -- HL 60306./HL/NHLBI NIH HHS/ -- R01 HL060306/HL/NHLBI NIH HHS/ -- England -- Nature. 2016 Mar 31;531(7596):651-5. doi: 10.1038/nature17412. Epub 2016 Mar 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China. ; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China. ; Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China. ; MOE Key Laboratory of Protein Science, School of Life Sciences, Collaborative Innovation Center for Infectious Diseases, Tsinghua University, Beijing 100084, China. ; Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Haven 03755, USA. ; Rheumatology and Immunology Department of ChangZheng Hospital, Second Military Medical University, Shanghai 200433, China. ; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China. ; College of Life Sciences, Wuhan University, Wuhan, Hubei Province 430072, China. ; Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA. ; State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China. ; School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26982734" target="_blank"〉PubMed〈/a〉
    Keywords: Acetates/*pharmacology/therapeutic use ; Acetyl-CoA C-Acetyltransferase/antagonists & ; inhibitors/deficiency/genetics/metabolism ; Animals ; Atherosclerosis/drug therapy ; CD8-Positive T-Lymphocytes/*drug effects/*immunology/metabolism ; Cell Membrane/drug effects/metabolism ; Cholesterol/*metabolism ; Esterification/drug effects ; Female ; Immunological Synapses/drug effects/immunology/metabolism ; Immunotherapy/*methods ; Male ; Melanoma/*drug therapy/*immunology/metabolism/pathology ; Mice ; Programmed Cell Death 1 Receptor/antagonists & inhibitors/immunology ; Receptors, Antigen, T-Cell/immunology/metabolism ; Signal Transduction/drug effects ; Sulfonic Acids/*pharmacology/therapeutic use
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-01-28
    Description: Medulloblastoma is a highly malignant paediatric brain tumour, often inflicting devastating consequences on the developing child. Genomic studies have revealed four distinct molecular subgroups with divergent biology and clinical behaviour. An understanding of the regulatory circuitry governing the transcriptional landscapes of medulloblastoma subgroups, and how this relates to their respective developmental origins, is lacking. Here, using H3K27ac and BRD4 chromatin immunoprecipitation followed by sequencing (ChIP-seq) coupled with tissue-matched DNA methylation and transcriptome data, we describe the active cis-regulatory landscape across 28 primary medulloblastoma specimens. Analysis of differentially regulated enhancers and super-enhancers reinforced inter-subgroup heterogeneity and revealed novel, clinically relevant insights into medulloblastoma biology. Computational reconstruction of core regulatory circuitry identified a master set of transcription factors, validated by ChIP-seq, that is responsible for subgroup divergence, and implicates candidate cells of origin for Group 4. Our integrated analysis of enhancer elements in a large series of primary tumour samples reveals insights into cis-regulatory architecture, unrecognized dependencies, and cellular origins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, Charles Y -- Erkek, Serap -- Tong, Yiai -- Yin, Linlin -- Federation, Alexander J -- Zapatka, Marc -- Haldipur, Parthiv -- Kawauchi, Daisuke -- Risch, Thomas -- Warnatz, Hans-Jorg -- Worst, Barbara C -- Ju, Bensheng -- Orr, Brent A -- Zeid, Rhamy -- Polaski, Donald R -- Segura-Wang, Maia -- Waszak, Sebastian M -- Jones, David T W -- Kool, Marcel -- Hovestadt, Volker -- Buchhalter, Ivo -- Sieber, Laura -- Johann, Pascal -- Chavez, Lukas -- Groschel, Stefan -- Ryzhova, Marina -- Korshunov, Andrey -- Chen, Wenbiao -- Chizhikov, Victor V -- Millen, Kathleen J -- Amstislavskiy, Vyacheslav -- Lehrach, Hans -- Yaspo, Marie-Laure -- Eils, Roland -- Lichter, Peter -- Korbel, Jan O -- Pfister, Stefan M -- Bradner, James E -- Northcott, Paul A -- England -- Nature. 2016 Feb 4;530(7588):57-62. doi: 10.1038/nature16546. Epub 2016 Jan 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Oncology, Dana Farber Cancer Institute (DFCI), Boston, Massachusetts 02215, USA. ; Genome Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany. ; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany. ; Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; Department of Molecular Physiology &Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37212, USA. ; Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany. ; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington 98105, USA. ; Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany. ; Department of Bone Marrow Transplantation &Cellular Therapy, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany. ; Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany. ; Department of Translational Oncology, NCT Heidelberg, 69120 Heidelberg, Germany. ; Department of Neuropathology, NN Burdenko Neurosurgical Institute, 125047 Moscow, Russia. ; Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), and Department of Neuropathology University Hospital, 69120 Heidelberg, Germany. ; Department of Anatomy and Neurobiology, University of Tennessee Health Sciences Center, Memphis, Tennessee 38163, USA. ; Department of Pediatrics, Genetics Division, University of Washington, Seattle, Washington 98195, USA. ; Institute of Pharmacy and Molecular Biotechnology and BioQuant, University of Heidelberg, 69117 Heidelberg, Germany. ; Department of Pediatrics, University of Heidelberg, 69117 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26814967" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cerebellar Neoplasms/classification/*genetics/*pathology ; Enhancer Elements, Genetic/*genetics ; Female ; Gene Expression Regulation, Neoplastic/*genetics ; Gene Regulatory Networks/genetics ; Genes, Neoplasm/genetics ; Genes, Reporter/genetics ; Humans ; Male ; Medulloblastoma/*classification/genetics/*pathology ; Mice ; Reproducibility of Results ; Transcription Factors/*metabolism ; Zebrafish/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-03-01
    Description: Author(s): D. L. Rocco, A. de Campos, A. Magnus G. Carvalho, A. O. dos Santos, L. M. da Silva, S. Gama, M. S. da Luz, P. von Ranke, N. A. de Oliveira, A. A. Coelho, L. P. Cardoso, and J. A. Souza This paper presents the results of an investigation of the magnetic and structural properties of Mn 1 − x Fe x As compounds under hydrostatic pressure and chemical doping. The chemical doping was performed by using low Fe doping levels ( x = 0 , 0.003, 0.006, 0.010, 0.015, and 0.018), which emulates the negat… [Phys. Rev. B 93, 054431] Published Mon Feb 29, 2016
    Keywords: Magnetism
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-02-26
    Description: Author(s): L. K. Zou, Y. Zhang, L. Gu, J. W. Cai, and L. Sun Angular-dependent magnetoresistance (MR) is considered to be intrinsic to spintronic materials, represented by the classical anisotropic MR (AMR) phenomenon and the recently emerged spin Hall MR (SMR). So far, isotropic AMR, AMR with geometric size effect and interfacial effect, and SMR have been tr… [Phys. Rev. B 93, 075309] Published Thu Feb 25, 2016
    Keywords: Semiconductors II: surfaces, interfaces, microstructures, and related topics
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-05-17
    Description: Author(s): L. G. Vivas, J. Rubín, A. I. Figueroa, F. Bartolomé, L. M. García, C. Deranlot, F. Petroff, L. Ruiz, J. M. González-Calbet, S. Pascarelli, N. B. Brookes, F. Wilhelm, M. Chorro, A. Rogalev, and J. Bartolomé Co-Pd multilayers obtained by Pd capping of pre-deposited Co nanoparticles on amorphous alumina are systematically studied by means of high-resolution transmission electron microscopy, x-ray diffraction, extended x-ray absorption fine structure, SQUID-based magnetometry, and x-ray magnetic circular … [Phys. Rev. B 93, 174410] Published Mon May 16, 2016
    Keywords: Magnetism
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-03-25
    Description: Author(s): V. G. de Paula, L. M. da Silva, A. O. dos Santos, R. Lang, L. Otubo, A. A. Coelho, and L. P. Cardoso The correlation between structural and magnetic properties of GdA l 2 , focusing on the role played by the disorder in magnetic ordering and how it influences the magnetocaloric effect (MCE) are discussed. Micrometric-sized particles, consisting of nanocrystallites embedded in an amorphous matrix, were… [Phys. Rev. B 93, 094427] Published Wed Mar 23, 2016
    Keywords: Magnetism
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-01-30
    Description: Cystic fibrosis (CF) is caused by mutations in the gene that encodes the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. In humans and pigs, the loss of CFTR impairs respiratory host defenses, causing airway infection. But CF mice are spared. We found that in all three species, CFTR secreted bicarbonate into airway surface liquid. In humans and pigs lacking CFTR, unchecked H(+) secretion by the nongastric H(+)/K(+) adenosine triphosphatase (ATP12A) acidified airway surface liquid, which impaired airway host defenses. In contrast, mouse airways expressed little ATP12A and secreted minimal H(+); consequently, airway surface liquid in CF and non-CF mice had similar pH. Inhibiting ATP12A reversed host defense abnormalities in human and pig airways. Conversely, expressing ATP12A in CF mouse airways acidified airway surface liquid, impaired defenses, and increased airway bacteria. These findings help explain why CF mice are protected from infection and nominate ATP12A as a potential therapeutic target for CF.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shah, Viral S -- Meyerholz, David K -- Tang, Xiao Xiao -- Reznikov, Leah -- Abou Alaiwa, Mahmoud -- Ernst, Sarah E -- Karp, Philip H -- Wohlford-Lenane, Christine L -- Heilmann, Kristopher P -- Leidinger, Mariah R -- Allen, Patrick D -- Zabner, Joseph -- McCray, Paul B Jr -- Ostedgaard, Lynda S -- Stoltz, David A -- Randak, Christoph O -- Welsh, Michael J -- 5T32GM007337/GM/NIGMS NIH HHS/ -- DK054759/DK/NIDDK NIH HHS/ -- F30 HL123239/HL/NHLBI NIH HHS/ -- F30HL123239/HL/NHLBI NIH HHS/ -- HL091842/HL/NHLBI NIH HHS/ -- HL117744/HL/NHLBI NIH HHS/ -- HL51670/HL/NHLBI NIH HHS/ -- K08HL097071/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Jan 29;351(6272):503-7. doi: 10.1126/science.aad5589.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of Iowa, Iowa City, IA 52242, USA. Department of Molecular Physiology and Biophysics, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA. ; Department of Pathology, University of Iowa, Iowa City, IA 52242, USA. ; Department of Medicine, University of Iowa, Iowa City, IA 52242, USA. Howard Hughes Medical Institute, University of Iowa, Iowa City, IA 52242, USA. ; Department of Medicine, University of Iowa, Iowa City, IA 52242, USA. ; Department of Pediatrics University of Iowa, Iowa City, IA 52242, USA. ; Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA. ; Department of Pediatrics University of Iowa, Iowa City, IA 52242, USA. Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA. ; Department of Medicine, University of Iowa, Iowa City, IA 52242, USA. Department of Molecular Physiology and Biophysics, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA. Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA 52242, USA. ; Department of Medicine, University of Iowa, Iowa City, IA 52242, USA. Department of Molecular Physiology and Biophysics, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA. Howard Hughes Medical Institute, University of Iowa, Iowa City, IA 52242, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26823428" target="_blank"〉PubMed〈/a〉
    Keywords: Acids/metabolism ; Animals ; Bicarbonates/metabolism ; Cystic Fibrosis/*metabolism/*microbiology ; H(+)-K(+)-Exchanging ATPase/genetics/*metabolism ; Humans ; Hydrogen-Ion Concentration ; Lung/*metabolism/*microbiology ; Mice ; Mice, Inbred CFTR/genetics/metabolism ; Mice, Transgenic ; Swine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...