ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-01-30
    Description: Cystic fibrosis (CF) is caused by mutations in the gene that encodes the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. In humans and pigs, the loss of CFTR impairs respiratory host defenses, causing airway infection. But CF mice are spared. We found that in all three species, CFTR secreted bicarbonate into airway surface liquid. In humans and pigs lacking CFTR, unchecked H(+) secretion by the nongastric H(+)/K(+) adenosine triphosphatase (ATP12A) acidified airway surface liquid, which impaired airway host defenses. In contrast, mouse airways expressed little ATP12A and secreted minimal H(+); consequently, airway surface liquid in CF and non-CF mice had similar pH. Inhibiting ATP12A reversed host defense abnormalities in human and pig airways. Conversely, expressing ATP12A in CF mouse airways acidified airway surface liquid, impaired defenses, and increased airway bacteria. These findings help explain why CF mice are protected from infection and nominate ATP12A as a potential therapeutic target for CF.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shah, Viral S -- Meyerholz, David K -- Tang, Xiao Xiao -- Reznikov, Leah -- Abou Alaiwa, Mahmoud -- Ernst, Sarah E -- Karp, Philip H -- Wohlford-Lenane, Christine L -- Heilmann, Kristopher P -- Leidinger, Mariah R -- Allen, Patrick D -- Zabner, Joseph -- McCray, Paul B Jr -- Ostedgaard, Lynda S -- Stoltz, David A -- Randak, Christoph O -- Welsh, Michael J -- 5T32GM007337/GM/NIGMS NIH HHS/ -- DK054759/DK/NIDDK NIH HHS/ -- F30 HL123239/HL/NHLBI NIH HHS/ -- F30HL123239/HL/NHLBI NIH HHS/ -- HL091842/HL/NHLBI NIH HHS/ -- HL117744/HL/NHLBI NIH HHS/ -- HL51670/HL/NHLBI NIH HHS/ -- K08HL097071/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Jan 29;351(6272):503-7. doi: 10.1126/science.aad5589.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of Iowa, Iowa City, IA 52242, USA. Department of Molecular Physiology and Biophysics, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA. ; Department of Pathology, University of Iowa, Iowa City, IA 52242, USA. ; Department of Medicine, University of Iowa, Iowa City, IA 52242, USA. Howard Hughes Medical Institute, University of Iowa, Iowa City, IA 52242, USA. ; Department of Medicine, University of Iowa, Iowa City, IA 52242, USA. ; Department of Pediatrics University of Iowa, Iowa City, IA 52242, USA. ; Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA. ; Department of Pediatrics University of Iowa, Iowa City, IA 52242, USA. Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA. ; Department of Medicine, University of Iowa, Iowa City, IA 52242, USA. Department of Molecular Physiology and Biophysics, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA. Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA 52242, USA. ; Department of Medicine, University of Iowa, Iowa City, IA 52242, USA. Department of Molecular Physiology and Biophysics, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA. Howard Hughes Medical Institute, University of Iowa, Iowa City, IA 52242, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26823428" target="_blank"〉PubMed〈/a〉
    Keywords: Acids/metabolism ; Animals ; Bicarbonates/metabolism ; Cystic Fibrosis/*metabolism/*microbiology ; H(+)-K(+)-Exchanging ATPase/genetics/*metabolism ; Humans ; Hydrogen-Ion Concentration ; Lung/*metabolism/*microbiology ; Mice ; Mice, Inbred CFTR/genetics/metabolism ; Mice, Transgenic ; Swine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 32 (1986), S. 3863-3879 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Ternary blends comprising polycarbonate, (PC), poly(styrene-co-acrylonitrile) (SAN), and a polyester, either poly(1,4-butylene adipate) (PBA), poly(1,4-cyclohexanedimethylene succinate) (PCDS), or poly(ε-caprolactone) (PCL), were found to be miscible based on the presence of a single glass transition temperature at many compositions. For all systems, the addition of just 1% by weight polyester resulted in a miscible blend for SAN/PC ratios of 1/1 and 3/1, and a region of immiscibility was generally observed for PC-rich compositions with low polyester content. The melting point depression of PCL in the ternary and in binary mixtures was studied to obtain interaction parameters for the PCL/PC, PCL/SAN, and SAN/PC binaries. These parameters were used to calculate the locus of compositions which mark the boundary between single- and multiple-phase behavior. Agreement between the calculated and experimental boundary was only fair. PCDS was found to be the most efficient of the three polyesters studied for solubilizing PC and SAN. SAN copolymer containing 25% acrylonitrile (AN), was found to be more easily solubilized in PC by PCDS than SAN containing 13% AN.
    Additional Material: 17 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-05-12
    Description: Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. Airway disease is the major source of morbidity and mortality. Successful implementation of gene- and cell-based therapies for CF airway disease requires knowledge of relationships among percentages of targeted cells,...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...