ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (2)
  • 2019  (1)
  • 2016  (1)
Collection
Publisher
Years
  • 2015-2019  (2)
Year
  • 1
    Publication Date: 2016-01-18
    Description: Single-crystal images collected in mid-latitude cirrus are analyzed to provide internally consistent ice physical and optical properties for a size-resolved cloud microphysics model, including single-particle mass, projected area, fall speed, capacitance, single-scattering albedo, and asymmetry parameter. Using measurements gathered during two flights through a widespread synoptic cirrus shield, bullet rosettes are found to be the dominant identifiable habit among ice crystals with maximum dimension (Dmax) greater than 100 μm. Properties are therefore first derived for bullet rosettes based on measurements of arm lengths and widths, then for aggregates of bullet rosettes and for unclassified (irregular) crystals. Derived bullet rosette masses are substantially greater than reported in existing literature, whereas measured projected areas are similar or lesser, resulting in factors of 1.5–2 greater fall speeds, and, in the limit of large Dmax, near-infrared single-scattering albedo and asymmetry parameter (g) greater by ~ 0.2 and 0.05, respectively. A model that includes commonly imaged side plane growth on bullet rosettes exhibits relatively little difference in microphysical and optical properties aside from ~ 0.05 increase in mid-visible g primarily attributable to plate aspect ratio. In parcel simulations, ice size distribution and g are sensitive to assumed ice properties.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-10-23
    Description: Convective clouds play an important role in the Earth's climate system as a driver of large-scale circulations and a primary mechanism for the transport of heat, moisture, aerosols, and momentum throughout the troposphere. Despite their climatic importance, multi-scale models continue to have persistent biases produced by insufficient representation of convective clouds. This is the result of an incomplete understanding of key processes such as convective initiation, updraft and downdraft dynamics, cloud and precipitation microphysics, and aerosol-convection interactions.The Aerosol-Cloud-Precipitation-Climate Initiative, an international research group dedicated to advancing understanding of aerosol impacts on clouds relevant to climate, has identified the Houston, Texas region as an optimal location for targeted studies of aerosol-convection interactions within frequently developing isolated deep convection. Houston lies within a humid subtropical climate regime, where onshore flow and sea-breeze convection interact with a range of aerosol conditions associated with Houston's urban and industrial emissions. Pilot studies have suggested that convective clouds in this region are potentially significantly impacted by the varying aerosol conditions.
    Keywords: Meteorology and Climatology
    Type: DOE/SC-ARM-19-017 , GSFC-E-DAA-TN72709
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...