ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-19
    Description: The neural correlates of spaceflight-induced sensorimotor impairments are unknown. Head down-tilt bed rest (HDBR) serves as a microgravity analog because it mimics the headward fluid shift and limb unloading of spaceflight. We investigated focal brain white matter (WM) changes and fluid shifts during 70 days of 6 deg HDBR in 16 subjects who were assessed pre (2x), during (3x), and post-HDBR (2x). Changes over time were compared to those in control subjects (n=12) assessed four times over 90 days. Diffusion MRI was used to assess WM microstructure and fluid shifts. Free-Water Imaging, derived from diffusion MRI, was used to quantify the distribution of intracranial extracellular free water (FW). Additionally, we tested whether WM and FW changes correlated with changes in functional mobility and balance measures. HDBR resulted in FW increases in fronto-temporal regions and decreases in posterior-parietal regions that largely recovered by two weeks post-HDBR. WM microstructure was unaffected by HDBR. FW decreased in the post-central gyrus and precuneus. We previously reported that gray matter increases in these regions were associated with less HDBR-induced balance impairment, suggesting adaptive structural neuroplasticity. Future studies are warranted to determine causality and underlying mechanisms.
    Keywords: Aerospace Medicine
    Type: JSC-CN-38506 , Human Research Program Investigators'' Workshop (HRP IWS 2017); Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: Astronauts returning from space flight show significant inter-subject variations in their abilities to readapt to a gravitational environment because of their innate sensory weighting. The ability to predict the manner and degree to which each individual astronaut will be affected would improve the effectiveness of countermeasure training programs designed to enhance sensorimotor adaptability. We hypothesize participant's ability to utilize individual sensory information (vision, proprioception and vestibular) influences adaptation in sensorimotor performance after space flight. The goal of this study is to develop a reliable protocol to test proprioceptive utilization in a functional postural control task. Subjects "stand" in a supine position while strapped to a backpack frame holding a friction-free device using air-bearings that allow the subject to move freely in the frontal plane, similar to when in upright standing. The frame is attached to a pneumatic cylinder, which can provide different levels of a gravity-like force that the subject must balance against to remain "upright". The supine posture with eyes closed ensures reduced vestibular and visual contribution to postural control suggesting somatosensory and/or non-otolith vestibular inputs will provide relevant information for maintaining balance control in this task. This setup is called the gravity bed. Fourteen healthy subjects carried out three trials each with eyes open alternated with eyes closed, "standing" on their dominant leg in the gravity bed environment while loaded with 60 percent of their body weight. Subjects were instructed to: "use your sense of sway about the ankle and pressure changes under the foot to maintain balance." Maximum length of a trial was 45 seconds. A force plate underneath the foot recorded forces and moments during the trial and an inertial measurement unit (IMU) attached on the backpack's frame near the center of mass of the subject recorded upper body postural responses. Series of linear and non-linear analyses were carried out on several force plate and IMU data including stabilogram diffusion analysis on the center of pressure (COP) to find a subset of parameters that were sensitive to detect differences in postural performance between eyes open and closed conditions. Results revealed that seven parameters (root mean square (RMS) of medio-lateral (ML) COP, range of ML COP, RMS of roll moment, range of trunk roll, minimum time-to-boundary (TTB), integrated TTB, and critical mean square planar displacement (delta r (sup 2) (sub c)) were significantly different between eyes open and closed conditions. We will present data to show the efficacy of using performance in single leg stance with eyes closed on the gravity bed to assess individuals' ability to utilize proprioceptive information in a functional postural control task to predict re-adaptation for sensorimotor and functional performance.
    Keywords: Aerospace Medicine
    Type: JSC-CN-34840 , 2016 NASA Human Research Program Investigators'' Workshop (HRP IWS 2016); Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: Background: Future human space travel will consist primarily of long-duration missions onboard the International Space Station (ISS) or exploration-class missions to Mars, its moons, or nearby asteroids. Astronauts participating in long-duration missions may be at an increased risk of oxidative stress and inflammatory damage due to radiation, psychological stress, altered physical activity, nutritional insufficiency, and hyperoxia during extravehicular activity. By studying one identical twin during his 1-year ISS mission and one ground-based twin, this work extends a current NASA-funded investigation to determine whether these spaceflight factors contribute to an accelerated progression of atherosclerosis. This study of twins affords a unique opportunity to examine the spaceflight-related atherosclerosis risk independent of the confounding factors associated with different genotypes. Purpose: The purpose of this investigation is to determine whether biomarkers of oxidative and inflammatory stress are elevated during and after long-duration spaceflight and determine if a relation exists between levels of these biomarkers and structural and functional indices of atherosclerotic risk measured in the carotid and brachial arteries. These physiological and biochemical data will be extended by using an exploratory approach to investigate the relationship between intermediate phenotypes and risk factors for atherosclerosis and the metabolomic signature from plasma and urine samples. Since metabolites are often the indirect products of gene expression, we will simultaneously assess gene expression and DNA methylation in leukocytes. Hypothesis: We predict that the space-flown twin will experience elevated biomarkers of oxidative stress and inflammatory damage, altered arterial structure and function, accelerated telomere shortening, dysregulation of genes associated with oxidative stress and inflammation, and a metabolic profile shift that is associated with elevated atherosclerosis risk factors. Conversely, these will not be observed in the ground-based twin. Methods: We will measure blood and urine biomarkers of oxidative stress and inflammation as well as arterial structure and function (carotid intima-medial thickness and brachial artery flow-mediated dilation) in one twin astronaut before, during, and after long-duration spaceflight and in his twin serving as a ground-based control. Furthermore, we will measure metabolomics (targeted and untargeted approaches) and genomic markers (DNA methylation, mRNA gene expression, telomere length) to elucidate the molecular mechanisms involved. A panel of biomarkers of oxidative and inflammatory stress will be measured in venous blood samples and 24-hour (in-flight) and 48-hour (pre- and post-flight) urine pools twice before flight, early (flight days 15 and 60) and late (2 weeks before landing) during the mission, and early in the post-flight recovery phase (approximately 3-5 days after landing). Arterial structure, assessed from measures of intima-media thickness, will be measured at the same times. Arterial function will be assessed using brachial flow-mediated dilation, a well-validated measure used to assess endothelium-dependent vasodilation and a sensitive predictor of atherosclerotic risk, only before and after spaceflight. Discussion: Pre- and in-flight data collection is in progress for the space-flown twin, and similar data have been obtained from the ground-based twin. Blood and urine samples will be batch processed when received from ISS after the conclusion of the 1-year mission. Results from these individual subjects will be compared to the larger complement of subjects participating in the companion study currently ongoing in ISS astronauts.
    Keywords: Aerospace Medicine
    Type: JSC-CN-34856 , 2016 NASA Human Research Program Investigators'' Workshop (HRP IWS 2016); Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: Introduction: Over the last two decades, several studies have been published on the impact of long-duration (i.e., 22 days or longer) spaceflight on the central nervous system (CNS). In consideration of the health and performance of crewmembers in flight and post-flight, we are conducting a controlled prospective longitudinal study to investigate the effects of spaceflight on the extent, longevity and neural bases of sensorimotor, cognitive, and neural changes. Multiple studies have demonstrated the effects of spaceflight on the vestibular system. One of the supporting tests conducted in this protocol is the Vestibular Evoked Myogenic Potential (VEMP) test that provides a unilateral measure of otolith (saccule and utricle) function. A different approach was taken for ocular VEMP (oVEMP) testing using a head striker system (Wackym et al. 2012). The oVEMP is generally considered to be a measure of utricle function. The the otolithic input to the inferior oblique muscle is predominately from the utricular macula. Thus, quantitatively, oVEMP tests utricular function. Another practical extension of these relationships is that the oVEMP reflects the superior vestibular nerve function. Methods: Ground testing was administered on 16 control subjects and for 8 subjects over four repeated sessions spanning 70 days. The oVEMP was elicitied via a hand held striker by a vibrotactile pulse presented at the rate of 1 Hz for 24 seconds on the side of the head as subjects lay supine on a gurney. Subjects were directed to gaze approximately 25 degrees above straight ahead in semi-darkness. For the oVEMP electromyograms will be recorded with active bipolar electrodes (Delsys Inc., Boston, MA) on the infra-orbital ridge 1 cm below the eyelid with a reference electrode on the below the knee cap. The EMG potentials were amplified; band-pass filtered using a BagnoliTM Desktop EMG System (Delsys Inc., Boston, MA, USA). This EMG signal is sampled at 10 kHz and the data stimulus onset to 100 MS was averaged over 24 trial repetitions for the vibrotactile VEMP. The typical oVEMP EMG response is an excitatory potential with first peak occurring at 11-12 ms and second peak at 18 ms. This requires a total recording time of approximately 29 seconds per trial which includes 5 seconds of no vibrotactile stimulation at the beginning of the protocol. The primary dependent measures consist of the latency and peak-to-peak amplitude from the EMG signals, which will be normalized to EMG levels at the beginning of the protocol. Data were collected for 3 repeated trials with striker stimulation on both the left and right side of the head Results: The oVEMP p1 range was observed at 3-14 ms and n1 at 7-19 ms. The striker system provided a consistent and rapid method for oVEMP testing. Discussion: Crew testing is in progress to determine changes in results between pre and post flight.
    Keywords: Aerospace Medicine
    Type: JSC-CN-34865 , Human Research Program Investigators'' Workshop: Integrated Pathways to Mars; Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN45018-SUPPL
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-19
    Description: Sensorimotor changes such as posture and gait instabilities can affect the functional performance of astronauts after gravitational transitions. Sensorimotor Adaptability (SA) training can help alleviate decrements on exposure to novel sensorimotor environments based on the concept of 'learning to learn' by exposure to varying sensory challenges during posture and locomotion tasks (Bloomberg 2015). Supra-threshold Stochastic Vestibular Stimulation (SVS) can be used to provide one of many challenges by disrupting vestibular inputs. In this scenario, the central nervous system can be trained to utilize veridical information from other sensory inputs, such as vision and somatosensory inputs, for posture and locomotion control. The minimum amplitude of SVS to simulate the effect of deterioration in vestibular inputs for preflight training or for evaluating vestibular contribution in functional tests in general, however, has not yet been identified. Few studies (MacDougall 2006; Dilda 2014) have used arbitrary but fixed maximum current amplitudes from 3 to 5 mA in the medio-lateral (ML) direction to disrupt balance function in healthy adults. Giving this high level of current amplitude to all the individuals has a risk of invoking side effects such as nausea and discomfort. The goal of this study was to determine the minimum SVS level that yields an equivalently degraded balance performance. Thirteen subjects stood on a compliant foam surface with their eyes closed and were instructed to maintain a stable upright stance. Measures of stability of the head, trunk, and whole body were quantified in the ML direction. Duration of time they could stand on the foam surface was also measured. The minimum SVS dosage was defined to be that level which significantly degraded balance performance such that any further increase in stimulation level did not lead to further balance degradation. The minimum SVS level was determined by performing linear fits on the performance variable at different stimulation levels. Results from the balance task suggest that there are inter-individual differences and the minimum SVS amplitude was found to be in the range of 1 mA to 2.5 mA across subjects. SVS resulted in an average decrement of balance task performance in the range of 62%-73% across different measured variables at the minimum SVS amplitude in comparison to the control trial (no stimulus). Training using supra-threshold SVS stimulation is one of the sensory challenges used for preflight SA training designed to improve adaptability to novel gravitational environments. Inter-individual differences in response to SVS can help customize the SA training paradigms using minimal dosage required. Another application of using SVS is to simulate acute deterioration of vestibular sensory inputs in the evaluation of tests for assessing vestibular function.
    Keywords: Aerospace Medicine
    Type: JSC-CN-38040 , Neuroscience 2016; Nov 12, 2016 - Nov 16, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-19
    Description: It is known that spaceflight adversely affects human sensorimotor function. With interests in longer duration deep space missions it is important to understand microgravity dose-response relationships. NASA's One Year Mission project allows for comparison of the effects of one year in space with those seen in more typical six month missions to the International Space Station. In the Neuromapping project we are performing structural and functional magnetic resonance brain imaging to identify the relationships between changes in neurocognitive function and neural structural alterations following a six month International Space Station mission. Our central hypothesis is that measures of brain structure, function, and network integrity will change from pre- to post-spaceflight. Moreover, we predict that these changes will correlate with indices of cognitive, sensory, and motor function in a neuroanatomically selective fashion. Our interdisciplinary approach utilizes cutting edge neuroimaging techniques and a broad-ranging battery of sensory, motor, and cognitive assessments that are conducted pre-flight, during flight, and post-flight to investigate potential neuroplastic and maladaptive brain changes in crewmembers following long-duration spaceflight. With the one year mission we had one crewmember participate in all of the same measures pre-, per- and post-flight as in our ongoing study. During this presentation we will provide an overview of the magnitude of changes observed with our brain and behavioral assessments for the one year crewmember in comparison to participants that have completed our six month study to date.
    Keywords: Aerospace Medicine
    Type: JSC-CN-38008 , 2017 NASA Human Research Program Investigators'' Workshop (HRP IWS 2017); Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Inclusion of ecosystem services (ES) information into national-scale development and climate adaptation planning has yet to become common practice, despite demand from decision makers. Identifying where ES originate and to whom the benefits flowunder current and future climate conditionsis especially critical in rapidly developing countries, where the risk of ES loss is high. Here, using Myanmar as a case study, we assess where and how ecosystems provide key benefits to the countrys people and infrastructure. We model the supply of and demand for sediment retention, dry-season baseflows, flood risk reduction and coastal storm protection from multiple beneficiaries. We find that locations currently providing the greatest amount of services are likely to remain important under the range of climate conditions considered, demonstrating their importance in planning for climate resilience. Overlap between priority areas for ES provision and biodiversity conservation is higher than expected by chance overall, but the areas important for multiple ES are underrepresented in currently designated protected areas and Key Biodiversity Areas. Our results are contributing to development planning in Myanmar, and our approach could be extended to other contexts where there is demand for national-scale natural capital information to shape development plans and policies
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN47171 , PLoS One; 12; 9; e0184951
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Atmospheric modeling of low-gravity (VL-G) young brown dwarfs remains challenging. The presence of very thick clouds is a possible source of this challenge, because of their extremely red near-infrared (NIR) spectra, but no cloud models provide a good fit to the data with a radius compatible with the evolutionary models for these objects. We show that cloudless atmospheres assuming a temperature gradient reduction caused by fingering convection provide a very good model to match the observed VL-G NIR spectra. The sequence of extremely red colors in the NIR for atmospheres with effective temperatures from 2000 K down to 1200 K is very well reproduced with predicted radii typical of young low-gravity objects. Future observations with NIRSPEC and MIRI on the James Webb Space Telescope (JWST) will provide more constraints in the mid-infrared, helping to confirm or refute whether or not the NIR reddening is caused by fingering convection. We suggest that the presence or absence of clouds will be directly determined by the silicate absorption features that can be observed with MIRI. JWST will therefore be able to better characterize the atmosphere of these hot young brown dwarfs and their low-gravity exoplanet analogs.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN49958 , Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 850; 1; 46
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Meltwater runoff from the Greenland Ice Sheet surface influences surface mass balance (SMB), ice dynamics and global sea level rise, but is estimated with climate models and thus difficult to validate. We present a way to measure ice surface runoff directly, from hourly in situ supraglacial river discharge measurements and simultaneous high-resolution satellite/drone remote sensing of upstream fluvial catchment area. A first 72-hour trial for a 63.1 square kilometer moulin-terminating internally drained catchment (IDC) on Greenland's mid-elevation (1207-1381 meters above sea level) ablation zone is compared with melt and runoff simulations from HIRHAM5, MAR3.6.1 (Modele Atmospherique Regionale 3.6.1), RACMO2.3 (Regional Atmospheric Climate Model 2.3), MERRA-2 (Modern Era Retrospective-analysis for Research and Applications-2) and SEB climate/SMB models. Current models cannot reproduce peak discharges or timing of runoff entering moulins, but are improved using synthetic unit hydrograph theory (SUH). Retroactive SUH applications to two older field studies reproduces their findings, signifying that remotely sensed IDC area, shape, and river-length are useful for predicting delays in peak runoff delivery to moulins. Applying SUH to HIRHAM5, MAR3.6.1, RACMO2.3 gridded melt products for 799 surrounding IDCs suggests their terminal moulins receive lower peak discharges, less diurnal variability, and asynchronous runoff timing relative to climate/SMB model output alone. Conversely, large IDCs produce high moulin discharges, even at high elevations where melt rates are low. During this particular field experiment models overestimated runoff by plus 21 percent to plus 58 percent, linked to overestimated ablation and possible meltwater retention in bare, low-density ice. Direct measurements of ice surface runoff will improve climate/SMB models, and incorporating remotely sensed IDCs will aid coupling of surface mass balance with ice dynamics and subglacial systems.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN50173 , Proceedings of the National Academy of Sciences (ISSN 0027-8424) (e-ISSN 1091-6490); 114; 50; E10622-E10631
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...