ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (1,350)
  • 1995-1999
  • 2015  (1,350)
Collection
Language
Years
  • 2015-2019  (1,350)
  • 1995-1999
Year
  • 11
  • 12
  • 13
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Deep Sea Research Part I: Oceanographic Research Papers 104 (2015): 72-91, doi:10.1016/j.dsr.2015.06.012.
    Description: Nitrogen fixation is an important yet still incompletely constrained component of the marine nitrogen cycle, particularly in the subsurface. A Video Plankton Recorder (VPR) survey in the subtropical North Atlantic found higher than expected Trichodesmium colony abundances at depth, leading to the hypothesis that deep nitrogen fixation in the North Atlantic may have been previously underestimated. Here, Trichodesmium colony abundances and modeled nitrogen fixation from VPR transects completed on two cruises in the tropical and subtropical North Atlantic in fall 2010 and spring 2011 were used to evaluate that hypothesis. A bio-optical model was developed based on carbon-normalized nitrogen fixation rates measured on those cruises. Estimates of colony abundance and nitrogen fixation were similar in magnitude and vertical and geographical distribution to conventional estimates in a recently compiled climatology. Thus, in the mean, VPR-based estimates of volume-specific nitrogen fixation rates at depth in the tropical North Atlantic were not inconsistent with estimates derived from conventional sampling methods. Based on this analysis, if Trichodesmium nitrogen fixation by colonies is underestimated, it is unlikely that it is due to underestimation of deep abundances by conventional sampling methods.
    Description: We gratefully acknowledge support of this research by NSF and NASA. A NASA Earth and Space Science Fellowship supported E. Olson's graduate studies.
    Keywords: Nitrogen fixation ; Trichodesmium spp. ; North Atlantic ; Video Plankton Recorder
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 28 (2015): 5885–5907, doi:10.1175/JCLI-D-14-00635.1.
    Description: The structure, variability, and regional connectivity of the Tokar Gap jet (TGJ) are described using WRF Model analyses and supporting atmospheric datasets from the East African–Red Sea–Arabian Peninsula (EARSAP) region during summer 2008. Sources of the TGJ’s unique quasi-diurnal nature and association with atypically high atmospheric moisture transport are traced back to larger-scale atmospheric dynamics influencing its forcing. These include seasonal shifts in the intertropical convergence zone (ITCZ), variability of the monsoon and North African wind regimes, and ties to other orographic flow patterns. Strong modulation of the TGJ by regional processes such as the desert heating cycle, wind convergence at the ITCZ surface front, and the local land–sea breeze cycle are described. Two case studies present the interplay of these influences in detail. The first of these was an “extreme” gap wind event on 12 July, in which horizontal velocities in the Tokar Gap exceeded 26 m s−1 and the flow from the jet extended the full width of the Red Sea basin. This event coincided with development of a large mesoscale convective complex (MCC) and precipitation at the entrance of the Tokar Gap as well as smaller gaps downstream along the Arabian Peninsula. More typical behavior of the TGJ during the 2008 summer is discussed using a second case study on 19 July. Downwind impact of the TGJ is evaluated using Lagrangian model trajectories and analysis of the lateral moisture fluxes (LMFs) during jet events. These results suggest means by which TGJ contributes to large LMFs and has potential bearing upon Sahelian rainfall and MCC development.
    Description: This work was supported by a grant from the King Abdullah University of Science and Technology (KAUST) as well as National Science Foundation Grant OCE0927017 and from DOD (MURI) Grant N000141110087, administered by the Office of Naval Research.
    Description: 2016-02-01
    Keywords: Africa ; Orographic effects ; Monsoons ; Atmosphere-land interaction ; Atmosphere-ocean interaction ; Hydrometeorology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Fisheries Oceanography 23 (2014): 521–553, doi:10.1111/fog.12087.
    Description: The ultimate goal of early life studies of fish over the past century has been to better understand recruitment variability. As evident in the Georges Bank haddock (Melanogrammus aeglefinus) population, there is a strong relationship between recruitment success and processes occurring during the planktonic larval stage. This research sought new insights into the mechanisms controlling the recruitment process in fish populations by using biological-physical modeling methods together with laboratory and field data sets. We created the first three-dimensional model of larval haddock on Georges Bank by coupling models of hydrodynamics, lower trophic levels, a single copepod species, and larval haddock. Interactions between feeding, metabolism, growth, vertical behavior, advection, predation, and the physical environment of larval haddock were quantitatively investigated using the coupled models. Particularly, the model was used to compare survival over the larval period and the sources of mortality in 1995 and 1998, two years of disparate haddock recruitment. The results of model simulations suggest that the increased egg hatching rates and higher food availability, which reduced starvation and predation, in 1998 contributed to its larger year-class. Additionally, the inclusion of temperature-dependent predation rates produced model results that better agreed with observations of the mean hatch date of survivors. The results from this biophysical model imply that food-limitation and its related losses to starvation and predation, especially from hatch to 7 mm, may be responsible for interannual variability in recruitment and larval survival outside of the years studied.
    Description: Financial support was provided by a WHOI Watson Fellowship, a WHOI Coastal Ocean Institute Student Research Proposal Award, and GLOBEC grants NA17RJ1223 (NOAA) and OCE0815838 (NSF).
    Description: 2015-11-15
    Keywords: Larval fish ; Individual-based model ; Recruitment ; GLOBEC
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 608–633, doi:10.1002/2014JC010254.
    Description: The coastal waters of the northern portion of the California Current System experience a seasonal decline in oxygen concentrations and hypoxia over the summer upwelling season that results in negative impacts on habitat for many organisms. Using a regional model extending from 43°N to 50°N, with an oxygen component developed in this study, drivers of seasonal and regional oxygen variability are identified. The model includes two pools of detritus, which was an essential addition in order to achieve good agreement with the observations. The model was validated using an extensive array of hydrographic and moored observations. The model captures the observed seasonal decline as well as spatial trends in bottom oxygen. Spatially, three regions of high respiration are identified as locations where hypoxia develops each modeled year. Two of the regions are previously identified recirculation regions. The third region is off of the Washington coast. Sediment oxygen demand causes the region on the Washington coast to be susceptible to hypoxia and is correlated to the broad area of shallow shelf (〈60 m) in the region. Respiration and circulation-driven divergence contribute similar (60, 40%, respectively) amounts to the integrated oxygen budget on the Washington coast while respiration dominates the Oregon coast. Divergence, or circulation, contributes to the oxygen dynamics on the shelf in two ways: first, through the generation of retention features, and second, by determining variability.
    Description: This work was supported by a postdoctoral fellowship to Samantha Siedlecki from JISAO and the Program on Climate Change at the University of Washington, and grants from the Coastal Ocean Program of the National Oceanic and Atmospheric Administration (NOAA) (NA09NOS4780180) and the National Science Foundation (NSF) (OCE0942675) as part of the Pacific Northwest Toxins (PNWTOX) project.
    Description: 2015-08-05
    Keywords: Hypoxia ; Oxygen ; Respiration ; Upwelling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-05-25
    Description: Report of the Ocean Observation Research Coordination Network In-situ-Satellite Observation Working Group
    Description: This report is intended to illustrate and provide recommendations for how ocean observing systems of the next decade could focus on coastal environments using combined satellite and in situ measurements. Until recently, space-based observations have had surface footprints typically spanning hundreds of meters to kilometers. These provide excellent synoptic views for a wide variety of ocean characteristics. In situ observations are instead generally point or linear measurements. The interrelation between space-based and in-situ observations can be challenging. Both are necessary and as sensors and platforms evolve during the next decade, the trend to facilitate interfacing space and in-situ observations must continue and be expanded. In this report, we use coastal observation and analyses to illustrate an observing system concept that combines in situ and satellite observing technologies with numerical models to quantify subseasonal time scale transport of freshwater and its constituents from terrestrial water storage bodies across and along continental shelves, as well as the impacts on some key biological/biogeochemical properties of coastal waters.
    Description: Ocean Research Coordination Network and the National Science Foundation
    Repository Name: Woods Hole Open Access Server
    Type: Working Paper
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 4129–4150, doi:10.1002/2015JC010728.
    Description: Correlations of Trichodesmium colony abundance with the eddy field emerged in two segments of Video Plankton Recorder observations made in the southwestern North Atlantic during fall 2010 and spring 2011. In fall 2010, local maxima in abundance were observed in cyclones. We hypothesized surface Ekman transport convergence as a mechanism for trapping buoyant colonies in cyclones. Idealized models supported the potential of this process to influence the distribution of buoyant colonies over time scales of several months. In spring 2011, the highest vertically integrated colony abundances were observed in anticyclones. These peaks in abundance correlated with anomalously fresh water, suggesting riverine input as a driver of the relationship. These contrasting results in cyclones and anticyclones highlight distinct mechanisms by which mesoscale eddies can influence the abundance and distribution of Trichodesmium populations of the southwestern North Atlantic.
    Description: We gratefully acknowledge support of this research by NSF and NASA. A NASA Earth and Space Science Fellowship supported E. Olson's graduate studies.
    Keywords: Eddy-wind interaction ; Amazon plume ; Video plankton recorder
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-05-26
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Atmosphere 5 (2014): 973-1001, doi:10.3390/atmos5040973.
    Description: An analysis of coastal meteorological mechanisms facilitating the transit pollution plumes emitted from sources in the Northeastern U.S. was based on observations from the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) 2004 field campaign. Particular attention was given to the relation of these plumes to coastal transport patterns in lower tropospheric layers throughout the Gulf of Maine (GOM), and their contribution to large-scale pollution outflow from the North American continent. Using measurements obtained during a series of flights of the National Oceanic & Atmospheric Administration (NOAA) WP-3D and the National Aeronautics and Space Administration (NASA) DC-8, a unique quasi-Lagrangian case study was conducted for a freshly emitted plume emanating from the New York City source region in late July 2004. The development of this plume stemmed from the accumulation of boundary layer pollutants within a coastal residual layer, where weak synoptic conditions allowed for its advection into the marine troposphere and transport by a mean southwesterly flow. Upon entering the GOM, analysis showed that the plume layer vertical structure evolved into an internal boundary layer form, with signatures of steep vertical gradients in temperature, moisture and wind speed often resulting in periodic turbulence. This structure remained well-defined during the plume study, allowing for the detachment of the plume layer from the surface and minimal plume-sea surface exchange. In contrast, shear driven turbulence within the plume layer facilitated lateral mixing with other low-level plumes during its transit. This turbulence was periodic and further contributed to the high spatial variability in trace gas mixing ratios. Further influences of the turbulent mixing were observed in the impact of the plume inland as observed by the Atmospheric Investigation, Regional Modeling, Analysis and Prediction (AIRMAP) air quality network. This impact was seen as extreme elevations of surface ozone and CO levels, equaling the highest observed that summer.
    Description: Financial support for this work was from the NOAA Office of Oceanic and Atmospheric Research under grant #NA07OAR4600514. - See more at: http://www.mdpi.com/2073-4433/5/4/973/htm#sthash.E0atBClM.dpuf
    Keywords: Coastal ; Atmospheric physics ; Continental outflow ; Trace gas transport ; Turbulence ; Boundary layers ; ICARTT campaign ; New England ; North Atlantic ; Lagrangian ; Regional climate
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    Arizona Board of Regents | Marine Biological Laboratory Archives (Woods Hole, Mass.)
    In:  The John Philip Trinkaus Papers, Box 5, Folder 6, Marine Biological Laboratory Archives
    Publication Date: 2023-01-12
    Description: Letter asking for support to extend Harlyn Halvorson's term as director of the MBL.
    Description: Photocopy of typed letter
    Description: 1-page
    Description: Correspondence
    Keywords: People ; Governance
    Repository Name: Woods Hole Open Access Server
    Language: English
    Type: Text
    Format: Image/tif
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...