ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (29)
  • 2020-2024  (4)
  • 2020-2022  (2)
  • 2015-2019
  • 2010-2014  (23)
  • 1940-1944
  • 2021  (6)
  • 2021  (6)
  • 2014  (23)
Collection
Language
Years
  • 2020-2024  (4)
  • 2020-2022  (2)
  • 2015-2019
  • 2010-2014  (23)
  • 1940-1944
  • +
Year
  • 1
    Publication Date: 2021-07-21
    Description: We present dissolved and total dissolvable trace elements for spring and summer cruises in 2010 in the high‐latitude North Atlantic. Surface and full depth data are provided for Al, Cd, Co, Cu, Mn, Ni, Pb, and Zn in the Iceland and Irminger Basins, and consequences of biological uptake and inputs by the spring Eyjafjallajökull volcanic eruption are assessed. Ash from Eyjafjallajökull resulted in pronounced increases in Al, Mn, and Zn in surface waters in close proximity to Iceland during the eruption, while 3 months later during the summer cruise levels had returned to more typical values for the region. The apparent seasonal removal ratios of surface trace elements were consistent with biological export. Assessment of supply of trace elements to the surface mixed layer for the region, excluding volcanic inputs, indicated that deep winter mixing was the dominant source, with diffusive mixing being a minor source (between 13.5% [dissolved Cd, DCd] and −2.43% [DZn] of deep winter flux), and atmospheric inputs being an important source only for DAl and DZn (DAl up to 42% and DZn up to 4.2% of deep winter + diffusive fluxes) and typically less than 1% for the other elements. Elemental supply ratios to the surface mixed layer through convection were comparable to apparent removal ratios we calculated between spring and summer. Given that deep mixing dominated nutrient and trace element supply to surface waters, predicted increases in water column stratification in this region may reduce supply, with potential consequences for primary production and the biological carbon pump.
    Description: Key Points: Bio‐essential element concentrations in surface waters decreased from spring to summer with removal ratios reflecting biological uptake. Effects of volcanic inputs from Eyjafjallajökull in spring 2010 were pronounced for Al, Mn, and Zn but returned to typical levels in summer. Deep winter convection dominated trace element supply to surface waters with minor contributions from atmospheric and diffusive mixing.
    Description: GEOMAR Helmholtz Centre for Ocean Research Kiel http://dx.doi.org/10.13039/501100003153
    Description: Natural Environment Research Council http://dx.doi.org/10.13039/501100000270
    Keywords: 551.9
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: Water ice and other volatiles may be located in the Moon's polar regions, with sufficient quantities for in situ extraction and utilization by future human and robotic missions. Evidence from orbiting spacecraft and the LCROSS impactor suggests the presence of surface and/or nearsurface volatiles, including water ice. These deposits are of interest to human exploration to understand their potential for use by astronauts. Understanding the composition, quantity, distribution, and form of water/H species and other volatiles associated with lunar cold traps is identified as a NASA Strategic Knowledge Gap (SKG) for Human Exploration. These polar volatile deposits could also reveal important information about the delivery of water to the Earth- Moon system, so are of scientific interest. The scientific exploration of the lunar polar regions was one of the key recommendations of the Planetary Science Decadal Survey. In order to address NASA's SKGs, the Advanced Exploration Systems (AES) program selected three lowcost 6-U CubeSat missions for launch as secondary payloads on the first test flight (EM1) of the Space Launch System (SLS) scheduled for 2017. The Lunar Flashlight mission was selected as one of these missions, specifically to address the SKG associated with lunar volatiles. Development of the Lunar Flashlight CubeSat concept leverages JPL's Interplanetary Nano- Spacecraft Pathfinder In Relevant Environment (INSPIRE) mission, MSFC's intimate knowledge of the Space Launch System and EM-1 mission, small business development of solar sail and electric propulsion hardware, and JPL experience with specialized miniature sensors. The goal of Lunar Flashlight is to determine the presence or absence of exposed water ice and its physical state, and map its concentration at the kilometer scale within the permanently shadowed regions of the lunar south pole. After being ejected in cislunar space by SLS, Lunar Flashlight deploys its solar panels and solar sail and maneuvers into a low-energy transfer to lunar orbit. The solar sail and attitude control system work to bring the satellite into an elliptical polar orbit spiraling down to a perilune of 30-10 km above the south pole for data collection. Lunar Flashlight uses its solar sail to shine reflected sunlight into permanently shadowed regions, measuring surface albedo with a four-filter point spectrometer at 1.1, 1.5 1.9, and 2.0 microns. Water ice will be distinguished from dry regolith from these measurements in two ways: 1) spatial variations in absolute reflectance (water ice is much brighter in the continuum channels), and 2) reflectance ratios between absorption and continuum channels. Derived reflectance and reflectance ratios will be mapped onto the lunar surface in order to distinguish the composition of the PSRs from that of the sunlit terrain. Lunar Flashlight enables a low-cost path to in-situ resource utilization (ISRU) by identifying operationally useful deposits (if there are any), which is a game-changing capability for expanded human exploration.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M14-3629 , NASA''s Solar System Exploration Research Virtual Institute Exploration Science Forum; Jul 21, 2014 - Jul 23, 2014; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The inherent strength of individual carbon nanotubes offers considerable opportunity for the development of advanced, lightweight composite structures. Recent work in the fabrication and application of carbon nanotube (CNT) forms such as yarns and sheets has addressed early nanocomposite limitations with respect to nanotube dispersion and loading; and has pushed the technology toward structural composite applications. However, the high tensile strength of an individual CNT has not directly translated to macro-scale CNT forms where bulk material strength is limited by inter-tube electrostatic attraction and slippage. The focus of this work was to assess post processing of CNT sheet and yarn to improve the macro-scale strength of these material forms. Both small molecule functionalization and e-beam irradiation was evaluated as a means to enhance tensile strength and Youngs modulus of the bulk CNT material. Mechanical testing results revealed a tensile strength increase in CNT sheets by 57 when functionalized, while an additional 48 increase in tensile strength was observed when functionalized sheets were irradiated; compared to unfunctionalized sheets. Similarly, small molecule functionalization increased yarn tensile strength up to 25, whereas irradiation of the functionalized yarns pushed the tensile strength to 88 beyond that of the baseline yarn.
    Keywords: Composite Materials; Chemistry and Materials (General)
    Type: GRC-E-DAA-TN15661 , Nanotech 2014; Jun 15, 2014 - Jun 18, 2014; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Type: M14-3827 , NASA''s Solar System Exploration Research Virtual Institute (NASA SSERVI) Exploration Science Forum; Jul 21, 2014 - Jul 23, 2014; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: Convection plays an important role in the transport of heat, moisture and trace gases. In this study, we simulated CO2 concentrations with an atmospheric general circulation model (GCM). Three different convective transport algorithms were used. One is a modified Arakawa-Shubert scheme that was native to the GCM; two others used in two off-line chemical transport models (CTMs) were added to the GCM here for comparison purposes. Advanced CO2 surfaced fluxes were used for the simulations. The results were compared to a large quantity of CO2 observation data. We find that the simulation results are sensitive to the convective transport algorithms. Overall, the three simulations are quite realistic and similar to each other in the remote marine regions, but are significantly different in some land regions with strong fluxes such as Amazon and Siberia during the convection seasons. Large biases against CO2 measurements are found in these regions in the control run, which uses the original GCM. The simulation with the simple diffusive algorithm is better. The difference of the two simulations is related to the very different convective transport speed.
    Keywords: Geophysics
    Type: GSFC-E-DAA-TN13279
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-13
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power; Mechanical Engineering
    Type: M14-4076 , JANNAF Liquid Propulsion Subcommittee (LPS) Advance Materials Panel (AMP) Additive Manufacturing for Propulsion Applications Technical Interchange Meeting (TIM); Sep 03, 2014 - Sep 05, 2014; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-13
    Description: The Marshall Space Flight Center's Propulsion Systems Department has gained significant experience in the last year designing, building, and testing liquid engine components using additive manufacturing. The department has developed valve, duct, turbo-machinery, and combustion device components using this technology. Many valuable lessons were learned during this process. These lessons will be the focus of this presentation. We will present criteria for selecting part candidates for additive manufacturing. Some part characteristics are 'tailor made' for this process. Selecting the right parts for the process is the first step to maximizing productivity gains. We will also present specific lessons we learned about feature geometry that can and cannot be produced using additive manufacturing machines. Most liquid engine components were made using a two-step process. The base part was made using additive manufacturing and then traditional machining processes were used to produce the final part. The presentation will describe design accommodations needed to make the base part and lessons we learned about which features could be built directly and which require the final machine process. Tolerance capabilities, surface finish, and material thickness allowances will also be covered. Additive Manufacturing can produce internal passages that cannot be made using traditional approaches. It can also eliminate a significant amount of manpower by reducing part count and leveraging model-based design and analysis techniques. Information will be shared about performance enhancements and design efficiencies we experienced for certain categories of engine parts.
    Keywords: Spacecraft Propulsion and Power
    Type: M14-3851 , Joint Army NASA Navy Air Force (JANNAF) Liquid Propulsion Subcommittee and Advanced Materials Panel Additive Manufacturing for Propulsion Applications Technical Interchange Meeting; Sep 03, 2014 - Sep 05, 2014; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-28
    Description: No abstract available
    Keywords: Administration and Management; Documentation and Information Science
    Type: NASA/SP-2014-3706/REVA
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN14819 , Amerian Physical Society (APS) April Meeting; Apr 05, 2014 - Apr 08, 2014; Savannah, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Individual carbon nanotubes (CNTs) exhibit exceptional tensile strength and stiffness; however, these properties have not translated well to the macroscopic scale. Premature failure of bulk CNT materials under tensile loading occurs due to the relatively weak frictional forces between adjacent CNTs, leading to poor load transfer through the material. When used in polymer matrix composites (PMCs), the weak nanotube-matrix interaction leads to the CNTs providing less than optimal reinforcement.Our group is examining the use of covalent crosslinking and surface modification as a means to improve the tensile properties of PMCs containing carbon nanotubes. Sheet material comprised of unaligned multi-walled carbon nanotubes (MWCNT) was used as a drop-in replacement for carbon fiber in the composites. A variety of post-processing methods have been examined for covalently crosslinking the CNTs to overcome the weak inter-nanotube shear interactions, resulting in improved tensile strength and modulus for the bulk sheet material. Residual functional groups from the crosslinking chemistry may have the added benefit of improving the nanotube-matrix interaction. Composites prepared using these crosslinked, surface-modified nanotube sheet materials exhibit superior tensile properties to composites using the as received CNT sheet material.
    Keywords: Composite Materials
    Type: GRC-E-DAA-TN13936 , American Chemical Society (ACS) National Meeting; Mar 16, 2014 - Mar 20, 2014; Dallas, Texas; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...