ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Phylogeny  (3)
  • 2010-2014  (3)
  • 1990-1994
  • 1965-1969
  • 2013  (3)
Collection
Keywords
Years
  • 2010-2014  (3)
  • 1990-1994
  • 1965-1969
Year
  • 1
    Publication Date: 2013-06-15
    Description: The transition from jawless to jawed vertebrates (gnathostomes) resulted in the reconfiguration of the muscles and skeleton of the head, including the creation of a separate shoulder girdle with distinct neck muscles. We describe here the only known examples of preserved musculature from placoderms (extinct armored fishes), the phylogenetically most basal jawed vertebrates. Placoderms possess a regionalized muscular anatomy that differs radically from the musculature of extant sharks, which is often viewed as primitive for gnathostomes. The placoderm data suggest that neck musculature evolved together with a dermal joint between skull and shoulder girdle, not as part of a broadly flexible neck as in sharks, and that transverse abdominal muscles are an innovation of gnathostomes rather than of tetrapods.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Trinajstic, Kate -- Sanchez, Sophie -- Dupret, Vincent -- Tafforeau, Paul -- Long, John -- Young, Gavin -- Senden, Tim -- Boisvert, Catherine -- Power, Nicola -- Ahlberg, Per Erik -- New York, N.Y. -- Science. 2013 Jul 12;341(6142):160-4. doi: 10.1126/science.1237275. Epub 2013 Jun 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Western Australian Organic and Isotope Geochemistry Centre, Department of Chemistry, Curtin University, Perth, Western Australia 6102, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23765280" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Fishes/*anatomy & histology/classification/*genetics ; *Fossils ; Maxillofacial Development/*genetics ; Neck Muscles/*anatomy & histology ; Phylogeny
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-01-22
    Description: The construction of the vertebral column has been used as a key anatomical character in defining and diagnosing early tetrapod groups. Rhachitomous vertebrae--in which there is a dorsally placed neural arch and spine, an anteroventrally placed intercentrum and paired, posterodorsally placed pleurocentra--have long been considered the ancestral morphology for tetrapods. Nonetheless, very little is known about vertebral anatomy in the earliest stem tetrapods, because most specimens remain trapped in surrounding matrix, obscuring important anatomical features. Here we describe the three-dimensional vertebral architecture of the Late Devonian stem tetrapod Ichthyostega using propagation phase-contrast X-ray synchrotron microtomography. Our scans reveal a diverse array of new morphological, and associated developmental and functional, characteristics, including a possible posterior-to-anterior vertebral ossification sequence and the first evolutionary appearance of ossified sternal elements. One of the most intriguing features relates to the positional relationships between the vertebral elements, with the pleurocentra being unexpectedly sutured or fused to the intercentra that directly succeed them, indicating a 'reverse' rhachitomous design. Comparison of Ichthyostega with two other stem tetrapods, Acanthostega and Pederpes, shows that reverse rhachitomous vertebrae may be the ancestral condition for limbed vertebrates. This study fundamentally revises our current understanding of vertebral column evolution in the earliest tetrapods and raises questions about the presumed vertebral architecture of tetrapodomorph fish and later, more crownward, tetrapods.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pierce, Stephanie E -- Ahlberg, Per E -- Hutchinson, John R -- Molnar, Julia L -- Sanchez, Sophie -- Tafforeau, Paul -- Clack, Jennifer A -- England -- Nature. 2013 Feb 14;494(7436):226-9. doi: 10.1038/nature11825. Epub 2013 Jan 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University Museum of Zoology, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK. spierce@rvc.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23334417" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Extremities/*anatomy & histology ; *Fossils ; Phylogeny ; Spine/*anatomy & histology ; Synchrotrons ; Vertebrates/*anatomy & histology ; X-Ray Microtomography
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-12-21
    Description: We report the complete mitochondrial genome sequence of the flowering plant Amborella trichopoda. This enormous, 3.9-megabase genome contains six genome equivalents of foreign mitochondrial DNA, acquired from green algae, mosses, and other angiosperms. Many of these horizontal transfers were large, including acquisition of entire mitochondrial genomes from three green algae and one moss. We propose a fusion-compatibility model to explain these findings, with Amborella capturing whole mitochondria from diverse eukaryotes, followed by mitochondrial fusion (limited mechanistically to green plant mitochondria) and then genome recombination. Amborella's epiphyte load, propensity to produce suckers from wounds, and low rate of mitochondrial DNA loss probably all contribute to the high level of foreign DNA in its mitochondrial genome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rice, Danny W -- Alverson, Andrew J -- Richardson, Aaron O -- Young, Gregory J -- Sanchez-Puerta, M Virginia -- Munzinger, Jerome -- Barry, Kerrie -- Boore, Jeffrey L -- Zhang, Yan -- dePamphilis, Claude W -- Knox, Eric B -- Palmer, Jeffrey D -- R01-GM-76012/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Dec 20;342(6165):1468-73. doi: 10.1126/science.1246275.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Indiana University, Bloomington, IN 47405, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24357311" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Bryophyta/classification/genetics ; Chlorophyta/classification/genetics ; DNA, Mitochondrial/*genetics ; *Gene Transfer, Horizontal ; *Genome, Plant ; Membrane Fusion ; *Mitochondrial Dynamics ; Molecular Sequence Data ; Phylogeny ; Tracheobionta/classification/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...