ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lunar and Planetary Science and Exploration  (6)
  • Organic Chemistry
  • Polymer and Materials Science
  • 2010-2014  (6)
  • 2000-2004
  • 1980-1984
  • 1940-1944
  • 1930-1934
  • 1915-1919
  • 2012  (6)
Collection
Years
  • 2010-2014  (6)
  • 2000-2004
  • 1980-1984
  • 1940-1944
  • 1930-1934
  • +
Year
  • 1
    Publication Date: 2019-07-19
    Description: Following successful science operations at Vesta, the Dawn spacecraft is headed for an encounter with Ceres in 2015. What have we learned at Vesta? And, what do we expect to learn by comparing Vesta and Ceres? We will address these questions from the standpoint of geochemistry. Dawn's Gamma Ray and Neutron Detector (GRaND) is sensitive to the elemental composition of surface materials to depths of a few decimeters [1]. Gamma rays and neutrons, produced by the steady bombardment of galactic cosmic rays and by the decay of naturally ]occurring radioisotopes (K, Th, U), provide a chemical fingerprint of the regolith. Analysis of planetary radiation emissions enables mapping of specific elements (such as Fe, Mg, Si, Cl, and H) and compositional parameters (such as average atomic mass), which provide information about processes that shaped the planet1s surface and interior. Dawn has exceeded operational goals for GRaND at Vesta, accumulating an abundance of nadir-pointed data during five months in a 210 km, low altitude mapping orbit around Vesta (265-km mean radius). Chemical information from gamma ray and neutron measurements was used to test the connection between Vesta and the howardite, eucrite, and diogenite (HED) meteorites [2]. Additionally, GRaND searched for evolved, igneous lithologies [3], mantle and upper crustal materials exposed in large impact basins, mesosiderite compositions, and hydrogen in Vesta1s bulk regolith. Results of our analyses and their implications for thermal evolution and regolith-processes will be presented. The possibility of a subcrustal ocean [4, 5] and lack of cerean meteorites makes water-rich Ceres a compelling target of exploration [6]. If Ceres underwent aqueous differentiation, then crustal overturn or gas driven volcanism may have significantly modified its primitive surface; and products of aqueous alteration (e.g. [7]) would detectable by GRaND [1]. For example, the presence of Cl in salts, associated with liquid-water-processes, would have a profound effect on the thermal neutron leakage flux. GRaND is sensitive to H and H-layering, which may be in the form of endogenic water ice or hydrous minerals on Ceres. Ammonia ice (e.g., from recent cryovolcanism) would produce a distinctly different neutron signature than water ice [1]. Prospective results for GRaND at Ceres will be presented in the context of what we have learned about Vesta.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-27224 , American Geophysical Union Fall Meeting; Dec 03, 2012 - Dec 07, 2012; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: NASA's Dawn spacecraft entered orbit around asteroid (4) Vesta in July 2011 for a yearlong mapping orbit. The surface of Vesta as imaged by the Dawn Framing Camera (FC) revealed a surface that is unlike any asteroid we have visited so far with a spacecraft. Albedo and color variations on Vesta are the most diverse in the asteroid belt with a majority of these linked to distinct compositional units on the asteroid s surface. FC discovered dark material on Vesta. These low albedo surface features were first observed during Rotational Characterization 3 phase at a resolution of approx. 487 m/pixel. Here we explore the composition and possible meteoritical analogs for the dark material on Vesta.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-26602 , 75th Annual Meeting of the Meteorical Society; Aug 12, 2012 - Aug 17, 2012; Cairns; Australia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: On 12-Dec-2011, the Dawn spacecraft commenced low altitude mapping of the giant asteroid, 4 Vesta (264-km mean radius). Dawn's roughly circular, polar, low altitude mapping orbit (LAMO) has a mean radius of 470 km, placing the spacecraft within about 210 km of Vesta's surface. At these altitudes, Dawn s Gamma Ray and Neutron Detector (GRaND) is sensitive to Vesta's elemental com-position (Fig. 1). GRaND will acquire data in LAMO for up to 16 weeks, which is sufficient to map the elemental composition of the entire surface of Vesta. The timing of LAMO enables us to report the first results of our geochemistry investigation at this conference. In this abstract, we present an overview of our initial observations, based on data acquired at high altitude and during the first weeks of LAMO. GRaND overview. A detailed description of the GRaND instrument, science objectives and prospective results is given in [1]. At low altitudes, GRaND is sensitive to gamma rays and neutrons produced by cosmogenic nuclear reactions and radioactive decay occurring within the top few decimeters of the surface and on a spatial scale of a few hundred kilometers. From these nuclear emissions, the abundance of several major- and minor-elements, such as Fe, Mg, Si, K, and Th can be determined. Assuming the howardite, eucrite, and diogenite (HED) meteorites are representative of Vesta s crustal composition [2], then GRaND will be able to map the mixing ratios of whole-rock HED end-members, enabling the determination of the relative proportions of basaltic eucrite, cumulate eucrite, and diogenite as well as the proportions of mafic and plagioclase minerals [1,3]. GRaND will also search for compositions not well-represented in the meteorite collection, such as evolved, K-rich lithologies [4], and outcrops of olivine from Vesta s mantle or igneous intrusions in major impact basins [5]. The search for a possible mesosiderite source region is described in [6]. GRaND will globally map the abundance of H, providing constraints on the delivery of H by solar wind and the infall of carbonaceous chondrite materials.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-25720 , 43rd Lunar and Planetary Science Conference; Mar 19, 2012 - Mar 23, 2012; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The concept of a mechanically deployable hypersonic decelerator, developed initially for high mass (~40 MT) human Mars missions, is currently funded by OCT for technology maturation. The ADEPT (Adaptive, Deployable Entry and Placement Technology) project has broad, game-changing applicability to in situ science missions to Venus, Mars, and the Outer Planets. Combined with maturation of conformal ablator technology (another current OCT investment), the two technologies provide unique low mass mission enabling capabilities otherwise not achievable by current rigid aeroshell or by inflatables. If this abstract is accepted, we will present results that illustrate the mission enabling capabilities of the mechanically deployable architecture for: (1) robotic Mars (Discovery or New Frontiers class) in the near term; (2) alternate approaches to landing MSL-class payloads, without the need for supersonic parachute or lifting entry, in the mid-term; and (3) Heavy mass and human missions to Mars in the long term.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN5858 , 22nd AIAA Aerodynamic Decelerator Systems Technology; Sep 05, 2012; Daytona Beach, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Dawn?s Gamma Ray and Neutron Detector (GRaND) successfully completed Low Altitude Mapping Orbit (LAMO) at Vesta. Over four months were spent acquiring data in a 460-km radius orbit around Vesta (265-km mean radius). In LAMO, strong signatures from Vesta were observed for gamma rays and neutrons. We present preliminary abundances, detection limits, and global maps of the elemental composition of Vesta.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-26600 , 75the Annual Meeting ofthe Meteorical Society meeting; Aug 12, 2012 - Aug 17, 2012; Cairns; Australia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The Framing Camera (FC) on the Dawn spacecraft has imaged most of the illuminated surface of Vesta with a resolution of apporpx. 20 m/pixel through different wavelength filters that allow for identification of lithologic units. The Visible and Infrared Mapping Spectrometer (VIR) has imaged the surface at lower spatial resolution but high spectral resolution from 0.25 to 5 micron that allows for detailed mineralogical interpretation. The FC has imaged geologic structures in the walls of fresh craters and on scarps on the margin of the Rheasilvia basin that consist of cliff-forming, competent units, either as blocks or semi-continuous layers, hundreds of m to km below the rims. Different units have different albedos, FC color ratios and VIR spectral characteristics, and different units can be juxtaposed in individual craters. We will describe different examples of these competent units and present preliminary interpretations of the structures. A common occurrence is of blocks several hundred m in size of high albedo (bright) and low albedo (dark) materials protruding from crater walls. In many examples, dark material deposits lie below coherent bright material blocks. In FC Clementine color ratios, bright material is green indicating deeper 1 m pyroxene absorption band. VIR spectra show these to have deeper and wider 1 and 2 micron pyroxene absorption bands than the average vestan surface. The associated dark material has subdued pyroxene absorption features compared to the average vestan surface. Some dark material deposits are consistent with mixtures of HED materials with carbonaceous chondrites. This would indicate that some dark material deposits in crater walls are megabreccia blocks. The same would hold for bright material blocks found above them. Thus, these are not intact crustal units. Marcia crater is atypical in that the dark material forms a semi-continuous, thin layer immediately below bright material. Bright material occurs as one or more layers. In one region, there is an apparent angular unconformity between the bright material and the dark material where bright material layers appear to be truncated against the underlying dark layer. One crater within the Rheasilvia basin contains two distinct types of bright materials outcropping on its walls, one like that found elsewhere on Vesta and the other an anomalous block ~200 m across. This material has the highest albedo; almost twice that of the vestan average. Unlike all other bright materials, this block has a subdued 1 micron pyroxene absorption band in FC color ratios. These data indicate that this block represents a distinct vestan lithology that is rarely exposed.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-26601 , 75th Annual Meeting of the Meteoritical Society; Aug 12, 2012 - Aug 17, 2012; Cairns; Australia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...