ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • *Biological Evolution  (16)
  • American Association for the Advancement of Science (AAAS)  (16)
  • American Meteorological Society
  • Copernicus
  • 2015-2019
  • 2010-2014  (16)
  • 1955-1959
  • 2012  (16)
Collection
Publisher
Years
  • 2015-2019
  • 2010-2014  (16)
  • 1955-1959
Year
  • 1
    Publication Date: 2012-01-10
    Description: Complex worker caste systems have contributed to the evolutionary success of advanced ant societies; however, little is known about the developmental processes underlying their origin and evolution. We combined hormonal manipulation, gene expression, and phylogenetic analyses with field observations to understand how novel worker subcastes evolve. We uncovered an ancestral developmental potential to produce a "supersoldier" subcaste that has been actualized at least two times independently in the hyperdiverse ant genus Pheidole. This potential has been retained and can be environmentally induced throughout the genus. Therefore, the retention and induction of this potential have facilitated the parallel evolution of supersoldiers through a process known as genetic accommodation. The recurrent induction of ancestral developmental potential may facilitate the adaptive and parallel evolution of phenotypes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rajakumar, Rajendhran -- San Mauro, Diego -- Dijkstra, Michiel B -- Huang, Ming H -- Wheeler, Diana E -- Hiou-Tim, Francois -- Khila, Abderrahman -- Cournoyea, Michael -- Abouheif, Ehab -- New York, N.Y. -- Science. 2012 Jan 6;335(6064):79-82. doi: 10.1126/science.1211451.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, McGill University, 1205 Avenue Dr. Penfield, Montreal, Quebec, Canada, H3A 1B1.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22223805" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ants/*genetics/growth & development/physiology ; *Biological Evolution ; Environment ; Female ; Genes, Insect ; Larva/growth & development ; Male ; Methoprene/pharmacology ; Molecular Sequence Data ; Phenotype ; Phylogeny ; Selection, Genetic ; Social Behavior ; Wings, Animal/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-11-01
    Description: Previously described feathered dinosaurs reveal a fascinating record of feather evolution, although substantial phylogenetic gaps remain. Here we report the occurrence of feathers in ornithomimosaurs, a clade of non-maniraptoran theropods for which fossilized feathers were previously unknown. The Ornithomimus specimens, recovered from Upper Cretaceous deposits of Alberta, Canada, provide new insights into dinosaur plumage and the origin of the avian wing. Individuals from different growth stages reveal the presence of a filamentous feather covering throughout life and winglike structures on the forelimbs of adults. The appearance of winglike structures in older animals indicates that they may have evolved in association with reproductive behaviors. These specimens show that primordial wings originated earlier than previously thought, among non-maniraptoran theropods.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zelenitsky, Darla K -- Therrien, Francois -- Erickson, Gregory M -- DeBuhr, Christopher L -- Kobayashi, Yoshitsugu -- Eberth, David A -- Hadfield, Frank -- New York, N.Y. -- Science. 2012 Oct 26;338(6106):510-4. doi: 10.1126/science.1225376.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geoscience, University of Calgary, Calgary, Alberta T2N 1N4, Canada. dkzeleni@ucalgary.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23112330" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Dinosaurs/*anatomy & histology/*classification ; Feathers/*anatomy & histology ; North America ; Phylogeny ; Wings, Animal/*anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-03-31
    Description: The occurrence and magnitude of disease outbreaks can strongly influence host evolution. In particular, when hosts face a resistance-fecundity trade-off, they might evolve increased resistance to infection during larger epidemics but increased susceptibility during smaller ones. We tested this theoretical prediction by using a zooplankton-yeast host-parasite system in which ecological factors determine epidemic size. Lakes with high productivity and low predation pressure had large yeast epidemics; during these outbreaks, hosts became more resistant to infection. However, with low productivity and high predation, epidemics remained small and hosts evolved increased susceptibility. Thus, by modulating disease outbreaks, ecological context (productivity and predation) shaped host evolution during epidemics. Consequently, anthropogenic alteration of productivity and predation might strongly influence both ecological and evolutionary outcomes of disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Duffy, Meghan A -- Ochs, Jessica Housley -- Penczykowski, Rachel M -- Civitello, David J -- Klausmeier, Christopher A -- Hall, Spencer R -- New York, N.Y. -- Science. 2012 Mar 30;335(6076):1636-8. doi: 10.1126/science.1215429.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA. duffy@gatech.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22461614" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Daphnia/*microbiology/*physiology ; *Ecosystem ; Female ; Fishes ; *Host-Pathogen Interactions ; Indiana ; *Lakes ; Male ; Metschnikowia/*pathogenicity ; Models, Biological ; Population Dynamics ; Predatory Behavior ; Reproduction ; Zooplankton/microbiology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-01-10
    Description: The centrosome, a cytoplasmic organelle formed by cylinder-shaped centrioles surrounded by a microtubule-organizing matrix, is a hallmark of animal cells. The centrosome is conserved and essential for the development of all animal species described so far. Here, we show that planarians, and possibly other flatworms, lack centrosomes. In planarians, centrioles are only assembled in terminally differentiating ciliated cells through the acentriolar pathway to trigger the assembly of cilia. We identified a large set of conserved proteins required for centriole assembly in animals and note centrosome protein families that are missing from the planarian genome. Our study uncovers the molecular architecture and evolution of the animal centrosome and emphasizes the plasticity of animal cell biology and development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3347778/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3347778/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Azimzadeh, Juliette -- Wong, Mei Lie -- Downhour, Diane Miller -- Sanchez Alvarado, Alejandro -- Marshall, Wallace F -- GM077004/GM/NIGMS NIH HHS/ -- GM57260/GM/NIGMS NIH HHS/ -- R01 GM057260/GM/NIGMS NIH HHS/ -- R01 GM077004/GM/NIGMS NIH HHS/ -- R37 GM057260/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Jan 27;335(6067):461-3. doi: 10.1126/science.1214457. Epub 2012 Jan 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of California-San Francisco, CA 94143, USA. juliette.azimzadeh@ucsf.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22223737" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Centrioles/metabolism/ultrastructure ; *Centrosome/metabolism/ultrastructure ; Cilia/metabolism/ultrastructure ; Genome, Helminth ; Helminth Proteins/*genetics/metabolism ; Movement ; Phenotype ; Planarians/*genetics/physiology/*ultrastructure ; RNA Interference ; Regeneration ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-04-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Normile, Dennis -- New York, N.Y. -- Science. 2012 Apr 27;336(6080):408-11. doi: 10.1126/science.336.6080.408.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22539697" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Brain/*physiology ; Brain Mapping ; Cognition ; Computer Simulation ; *Cultural Evolution ; Finches ; Hominidae ; Humans ; *Language ; *Learning ; Linguistics ; Magnetic Resonance Imaging ; Tool Use Behavior ; Vocalization, Animal
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-03-01
    Description: The genetic changes responsible for morphological differences between species are largely unidentified. Such changes can involve modifications of growth that are relevant to understanding evolution, development, and disease. We identified a gene that induces male-specific wing size and shape differences between Nasonia wasp species. Fine-scale mapping and in situ hybridization reveal that changes in at least three regions (two strictly in noncoding sequence) around the gene unpaired-like (upd-like) cause changes in spatial and temporal expression of upd-like in the developing wing and corresponding changes in wing width. Upd-like shows homology to the Drosophila unpaired gene, a well-studied signaling protein that regulates cell proliferation and differentiation. Our results indicate how multiple changes in the regulation of upd-like are involved in microevolution of morphological and sex-specific differences between species.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3520604/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3520604/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Loehlin, David W -- Werren, John H -- 5R01 GM070026-04/GM/NIGMS NIH HHS/ -- 5R24 GM084917-04/GM/NIGMS NIH HHS/ -- R01 GM070026/GM/NIGMS NIH HHS/ -- R24 GM084917/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Feb 24;335(6071):943-7. doi: 10.1126/science.1215193.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of Rochester, Rochester, NY 14627, USA. loehlin@wisc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22363002" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Biological Evolution ; Cloning, Molecular ; Drosophila/genetics ; Drosophila Proteins/genetics ; Female ; Gene Expression Profiling ; Gene Expression Regulation, Developmental ; Genes, Insect ; Insect Proteins/*genetics/metabolism ; Male ; Molecular Sequence Data ; Morphogenesis/genetics ; Organ Size ; Quantitative Trait Loci ; Sex Characteristics ; Species Specificity ; Transcription Factors/genetics ; Wasps/anatomy & histology/*genetics/*growth & development ; Wings, Animal/*anatomy & histology/*growth & development/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-11-01
    Description: Many biological functions are conserved, but the extent to which conservation applies to integrative behaviors is unknown. Vasopressin and oxytocin neuropeptides are strongly implicated in mammalian reproductive and social behaviors, yet rodent loss-of-function mutants have relatively subtle behavioral defects. Here we identify an oxytocin/vasopressin-like signaling system in Caenorhabditis elegans, consisting of a peptide and two receptors that are expressed in sexually dimorphic patterns. Males lacking the peptide or its receptors perform poorly in reproductive behaviors, including mate search, mate recognition, and mating, but other sensorimotor behaviors are intact. Quantitative analysis indicates that mating motor patterns are fragmented and inefficient in mutants, suggesting that oxytocin/vasopressin peptides increase the coherence of mating behaviors. These results indicate that conserved molecules coordinate diverse behavioral motifs in reproductive behavior.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3597094/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3597094/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Garrison, Jennifer L -- Macosko, Evan Z -- Bernstein, Samantha -- Pokala, Navin -- Albrecht, Dirk R -- Bargmann, Cornelia I -- GM07739/GM/NIGMS NIH HHS/ -- K99 GM092859/GM/NIGMS NIH HHS/ -- K99GM092859/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Oct 26;338(6106):540-3. doi: 10.1126/science.1226201.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23112335" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Biological Evolution ; CHO Cells ; Caenorhabditis elegans/genetics/*physiology ; Caenorhabditis elegans ; Proteins/agonists/chemistry/genetics/pharmacology/*physiology ; Cricetinae ; Humans ; Male ; Neuropeptides/chemistry/genetics/pharmacology/*physiology ; Oxytocin/chemistry/genetics/pharmacology/*physiology ; Receptors, G-Protein-Coupled/agonists/genetics/*physiology ; Reproduction ; Sexual Behavior, Animal/*physiology ; Vasopressins/chemistry/genetics/pharmacology/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-11-01
    Description: Scapular morphology is predictive of locomotor adaptations among primates, but this skeletal element is scarce in the hominin fossil record. Notably, both scapulae of the juvenile Australopithecus afarensis skeleton from Dikika, Ethiopia, have been recovered. These scapulae display several traits characteristic of suspensory apes, as do the few known fragmentary adult australopith representatives. Many of these traits change significantly throughout modern human ontogeny, but remain stable in apes. Thus, the similarity of juvenile and adult fossil morphologies implies that A. afarensis development was apelike. Additionally, changes in other scapular traits throughout African ape development are associated with shifts in locomotor behavior. This affirms the functional relevance of those characteristics, and their presence in australopith fossils supports the hypothesis that their locomotor repertoire included a substantial amount of climbing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Green, David J -- Alemseged, Zeresenay -- New York, N.Y. -- Science. 2012 Oct 26;338(6106):514-7. doi: 10.1126/science.1227123.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy, Midwestern University, Downers Grove, IL 60515, USA. dgreen1@midwestern.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23112331" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptation, Physiological ; Animals ; Anthropology ; *Biological Evolution ; Hominidae/*anatomy & histology/physiology ; Humans ; *Locomotion ; Scapula/*anatomy & histology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-10-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hare, J Daniel -- New York, N.Y. -- Science. 2012 Oct 5;338(6103):50-1. doi: 10.1126/science.1228893.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Entomology Department, University of California Riverside, Riverside, CA 92521, USA. daniel.hare@ucr.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23042873" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Biological/*genetics ; Animals ; Aphids/*physiology ; Arabidopsis/*genetics ; *Biological Evolution ; *Ecology ; *Genetic Loci ; Herbivory/*physiology ; Moths/*physiology ; Oenothera biennis/*physiology ; *Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-03-24
    Description: Studies of ecological networks (the web of interactions between species in a community) demonstrate an intricate link between a community's structure and its long-term viability. It remains unclear, however, how much a community's persistence depends on the identities of the species present, or how much the role played by each species varies as a function of the community in which it is found. We measured species' roles by studying how species are embedded within the overall network and the subsequent dynamic implications. Using data from 32 empirical food webs, we find that species' roles and dynamic importance are inherent species attributes and can be extrapolated across communities on the basis of taxonomic classification alone. Our results illustrate the variability of roles across species and communities and the relative importance of distinct species groups when attempting to conserve ecological communities.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stouffer, Daniel B -- Sales-Pardo, Marta -- Sirer, M Irmak -- Bascompte, Jordi -- New York, N.Y. -- Science. 2012 Mar 23;335(6075):1489-92. doi: 10.1126/science.1216556.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Integrative Ecology Group, Estacion Biologica de Donana (EBD-CSIC), Sevilla, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22442483" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Biota ; *Ecosystem ; *Food Chain ; Phylogeny
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...