ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-09-21
    Description: Author(s): Andrew Nicholson, Qinlong Luo, Weihao Ge, José Riera, Maria Daghofer, George B. Martins, Adriana Moreo, and Elbio Dagotto To understand the role that degeneracy, hybridization, and nesting play in the magnetic and pairing properties of multiorbital Hubbard models we here study numerically two types of two-orbital models, both with holelike and electron-like Fermi surfaces (FS's) that are related by nesting vectors ( π ,0... [Phys. Rev. B 84, 094519] Published Tue Sep 20, 2011
    Keywords: Superfluidity and superconductivity
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-12-14
    Description: 3-Methylcrotonyl-CoA carboxylase (MCC), a member of the biotin-dependent carboxylase superfamily, is essential for the metabolism of leucine, and deficient mutations in this enzyme are linked to methylcrotonylglycinuria (MCG) and other serious diseases in humans. MCC has strong sequence conservation with propionyl-CoA carboxylase (PCC), and their holoenzymes are both 750-kilodalton (kDa) alpha(6)beta(6) dodecamers. Therefore the architecture of the MCC holoenzyme is expected to be highly similar to that of PCC. Here we report the crystal structures of the Pseudomonas aeruginosa MCC (PaMCC) holoenzyme, alone and in complex with coenzyme A. Surprisingly, the structures show that the architecture and overall shape of PaMCC are markedly different when compared to PCC. The alpha-subunits show trimeric association in the PaMCC holoenzyme, whereas they have no contacts with each other in PCC. Moreover, the positions of the two domains in the beta-subunit of PaMCC are swapped relative to those in PCC. This structural information establishes a foundation for understanding the disease-causing mutations of MCC and provides new insights into the catalytic mechanism and evolution of biotin-dependent carboxylases. The large structural differences between MCC and PCC also have general implications for the relationship between sequence conservation and structural similarity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3271731/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3271731/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Christine S -- Ge, Peng -- Zhou, Z Hong -- Tong, Liang -- DK067238/DK/NIDDK NIH HHS/ -- GM071940/GM/NIGMS NIH HHS/ -- GM08281/GM/NIGMS NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 DK067238/DK/NIDDK NIH HHS/ -- R01 DK067238-08/DK/NIDDK NIH HHS/ -- R01 GM071940/GM/NIGMS NIH HHS/ -- R01 GM071940-08/GM/NIGMS NIH HHS/ -- T32 GM008281/GM/NIGMS NIH HHS/ -- T32 GM008281-25/GM/NIGMS NIH HHS/ -- England -- Nature. 2011 Dec 11;481(7380):219-23. doi: 10.1038/nature10691.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Columbia University, New York, New York 10027, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22158123" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Biocatalysis ; Carbon-Carbon Ligases/*chemistry/genetics/metabolism/ultrastructure ; Coenzyme A/chemistry/metabolism ; Crystallography, X-Ray ; Disease/genetics ; Holoenzymes/chemistry/metabolism ; Humans ; Methylmalonyl-CoA Decarboxylase/chemistry ; Models, Molecular ; Mutation/genetics ; Protein Binding ; Protein Structure, Tertiary ; Protein Subunits/chemistry/genetics/metabolism ; Pseudomonas aeruginosa/*enzymology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-12-14
    Description: NF-kappaB is crucial for innate immune defence against microbial infection. Inhibition of NF-kappaB signalling has been observed with various bacterial infections. The NF-kappaB pathway critically requires multiple ubiquitin-chain signals of different natures. The question of whether ubiquitin-chain signalling and its specificity in NF-kappaB activation are regulated during infection, and how this regulation takes place, has not been explored. Here we show that human TAB2 and TAB3, ubiquitin-chain sensory proteins involved in NF-kappaB signalling, are directly inactivated by enteropathogenic Escherichia coli NleE, a conserved bacterial type-III-secreted effector responsible for blocking host NF-kappaB signalling. NleE harboured an unprecedented S-adenosyl-l-methionine-dependent methyltransferase activity that specifically modified a zinc-coordinating cysteine in the Npl4 zinc finger (NZF) domains in TAB2 and TAB3. Cysteine-methylated TAB2-NZF and TAB3-NZF (truncated proteins only comprising the NZF domain) lost the zinc ion as well as the ubiquitin-chain binding activity. Ectopically expressed or type-III-secretion-system-delivered NleE methylated TAB2 and TAB3 in host cells and diminished their ubiquitin-chain binding activity. Replacement of the NZF domain of TAB3 with the NleE methylation-insensitive Npl4 NZF domain resulted in NleE-resistant NF-kappaB activation. Given the prevalence of zinc-finger motifs and activation of cysteine thiol by zinc binding, methylation of zinc-finger cysteine might regulate other eukaryotic pathways in addition to NF-kappaB signalling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Li -- Ding, Xiaojun -- Cui, Jixin -- Xu, Hao -- Chen, Jing -- Gong, Yi-Nan -- Hu, Liyan -- Zhou, Yan -- Ge, Jianning -- Lu, Qiuhe -- Liu, Liping -- Chen, She -- Shao, Feng -- England -- Nature. 2011 Dec 11;481(7380):204-8. doi: 10.1038/nature10690.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate Program in Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22158122" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/chemistry/*metabolism ; Bacterial Secretion Systems ; Cysteine/*metabolism ; Enteropathogenic Escherichia coli/metabolism/pathogenicity ; Escherichia coli Proteins/*metabolism ; Humans ; Intracellular Signaling Peptides and Proteins/chemistry/*metabolism ; MAP Kinase Kinase Kinases/metabolism ; Methionine/analogs & derivatives/metabolism ; Methylation ; Methyltransferases/metabolism ; NF-kappa B/*antagonists & inhibitors/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Signal Transduction ; Substrate Specificity ; TNF Receptor-Associated Factor 6 ; Tumor Necrosis Factor Receptor-Associated Peptides and Proteins/metabolism ; Ubiquitin/*metabolism ; Virulence Factors/*metabolism ; Zinc Fingers
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...