ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-12
    Description: The use of paralytic medications in the performance of RSI intubation is a high risk intervention used by many HEMS crews. There is no margin for error in RSI intubation as the results can be fatal. Operating room access for airway management training has become more difficult, and is not representative of the environment in which HEMS crews typically function. LifeEvac of Virginia designed and implemented an SST airway management program to provide a realistic, consistent training platform. The dynamic program incorporates standardized scenarios, and real life challenging cases that this and other programs have encountered. SST is done in a variety of settings including the helicopter, back of ambulances, staged car crashes and simulation centers. The result has been the indoctrination of a well defined, consistent approach to every airway management intervention. The SST program facillitates enhancement of technical skills. as well as team dynamics and communication.
    Keywords: Systems Analysis and Operations Research
    Type: Selected Papers and Presentations Presented at MODSIM World 2010 Conference and Expo; 391-396; NASA/CP-2011-217069/PT1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Astronomy
    Type: GSFC.CPR.5906.2012 , Workshop for Gravitation-Wave Mission Architectural Concepts; Dec 20, 2011 - Dec 21, 2011; Linthicum, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: This paper describes a machine vision system for relative spacecraft navigation during the terminal phase of approach to docking that: 1) matches high contrast image features of the target vehicle, as seen by a camera that is bore-sighted to the docking adapter on the chase vehicle, to the corresponding features in a 3d model of the docking adapter on the target vehicle and 2) is robust to on-orbit lighting. An implementation is provided for the case of the Space Shuttle Orbiter docking to the International Space Station (ISS) with quantitative test results using a full scale, medium fidelity mock-up of the ISS docking adapter mounted on a 6-DOF motion platform at the NASA Marshall Spaceflight Center Flight Robotics Laboratory and qualitative test results using recorded video from the Orbiter Docking System Camera (ODSC) during multiple orbiter to ISS docking missions. The Natural Feature Image Registration (NFIR) system consists of two modules: 1) Tracking which tracks the target object from image to image and estimates the position and orientation (pose) of the docking camera relative to the target object and 2) Acquisition which recognizes the target object if it is in the docking camera Field-of-View and provides an approximate pose that is used to initialize tracking. Detected image edges are matched to the 3d model edges whose predicted location, based on the pose estimate and its first time derivative from the previous frame, is closest to the detected edge1 . Mismatches are eliminated using a rigid motion constraint. The remaining 2d image to 3d model matches are used to make a least squares estimate of the change in relative pose from the previous image to the current image. The changes in position and in attitude are used as data for two Kalman filters whose outputs are smoothed estimate of position and velocity plus attitude and attitude rate that are then used to predict the location of the 3d model features in the next image.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-25317 , Infotech@Aerospace; Jun 19, 2012 - Jun 21, 2012; Garden Grove, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The Lunar Reconnaissance Orbiter (LRO) was launched on June 18, 2009. The nominal mission ended on September 15, 2010 and LRO is now on a four-year extended mission. The LRO performances in hot and cold cases are compared to pre-launch analysis predicts, and operational lessons learned are discussed. One instrument has required tighter-than-anticipated thermal control, and two others have frequently requested unanticipated calibration maneuvers that had to be evaluated for their thermal performance. A series of off nadir thermal analyses of the entire orbiter were performed prior to launch, and these predictions are compared to actual maneuvers, with a discussion of the process by which maneuvers can be rapidly evaluated for thermal concerns. On December 21st, 2010, LRO experienced its first severe Lunar Eclipse. Operationally, this required the Spacecraft to pre-heat its main avionics panel in order to minimize control heater power during the period when the Earth blocks the sun from the moon. The operational design and in-flight performance are summarized.
    Keywords: Spacecraft Design, Testing and Performance
    Type: GSFC.CP.4805.2011 , 41st International Conference on Environmental Systems; Jul 17, 2011 - Jul 21, 2011; Portland, OR; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: Motivated by the proposed EXIST mission, a "medium-class" space observatory to survey black holes and the Early Universe proposed to the 2010 NAS/NRC Astronomy and Astrophysics Decadal Survey, we have developed the first "large" area 256 sq cm close-tiled (0.6 mm gaps) hard X-ray (20-600 keV) imaging detector employing pixelated (2.5 mm) CdZnTe (CZT) detectors, each 2 x 2 x 0.5 cubic cm. We summarize the design, development and operation of this detector array (8 x 8 CZTs) and its performance as the imager for a coded aperture telescope on a high altitude (40 km) balloon flight in October. 2009, as the ProtoEX1STl payload. We then outline our current development of a second-generation imager, ProtcEXIST2. with 0.6 mm pixels on a 32 x 32 array on each CZT, and how it will lead to the ultimate imaging system needed for EXIST. Other applications of this technology will also be mentioned.
    Keywords: Astronomy
    Type: GSFC.JA.6610.2012
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-12
    Description: We present a detailed analysis from new multi-wavelength observations of the exceptional galaxy cluster ACT-CL J0102-4915, likely the most massive, hottest, most X-ray luminous and brightest Sunyaev-Zel'dovich (SZ) effect cluster known at redshifts greater than 0.6. The Atacama Cosmology Telescope (ACT) collaboration discovered ACT-CL J0102-4915 as the most significant Sunyaev-Zeldovich (SZ) decrement in a sky survey area of 755 square degrees. Our VLT/FORS2 spectra of 89 member galaxies yield a cluster redshift, z = 0.870, and velocity dispersion, sigma(gal) +/- 1321 106 km s-1. Our Chandra observations reveal a hot and X-ray luminous system with an integrated temperature of T(X) = 14:5 +/- 0:1 keV and 0.5 2.0 keV band luminosity of L(X) = (2:19 0:11) 1045 h(exp -2)70erg s-1. We obtain several statistically consistent cluster mass estimates; using empirical mass scaling relations with velocity dispersion, X-ray Y(X) , and integrated SZ distortion, we estimate a cluster mass of M(200) = (2:16 +/- 0:32) 10(exp 15) h(exp-1) 70M compared to the Sun. We constrain the stellar content of the cluster to be less than 1% of the total mass, using Spitzer IRAC and optical imaging. The Chandra and VLT/FORS2 optical data also reveal that ACT-CL J0102-4915 is undergoing a major merger between components with a mass ratio of approximately 2 to 1. The X-ray data show significant temperature variations from a low of 6:6 +/- 0:7 keV at the merging low-entropy, high-metallicity, cool core to a high of 22 +/- 6 keV. We also see a wake in the X-ray surface brightness and deprojected gas density caused by the passage of one cluster through the other from which we estimate a merger speed of around 1300 km s(exp -1) for an assumed merger timescale of 1 Gyr. ACTCL J0102-4915 is possibly a high-redshift analog of the famous Bullet Cluster. Such a massive cluster at this redshift is rare, although consistent with the standard CDM cosmology in the lower part of its allowed mass range. Massive, high-redshift mergers like ACT-CL J0102-4915 are unlikely to be reproduced in the current generation of numerical N-body cosmological simulations.
    Keywords: Astronomy
    Type: GSFC.JA.5672.2011
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: A family of metal/ceramic composite materials has been developed that are relatively inexpensive, lightweight alternatives to structural materials that are typified by beryllium, aluminum, and graphite/epoxy composites. These metal/ceramic composites were originally intended to replace beryllium (which is toxic and expensive) as a structural material for lightweight mirrors for aerospace applications. These materials also have potential utility in automotive and many other terrestrial applications in which there are requirements for lightweight materials that have high strengths and other tailorable properties as described below. The ceramic component of a material in this family consists of hollow ceramic spheres that have been formulated to be lightweight (0.5 g/cm3) and have high crush strength [40.80 ksi (.276.552 MPa)]. The hollow spheres are coated with a metal to enhance a specific performance . such as shielding against radiation (cosmic rays or x rays) or against electromagnetic interference at radio and lower frequencies, or a material to reduce the coefficient of thermal expansion (CTE) of the final composite material, and/or materials to mitigate any mismatch between the spheres and the matrix metal. Because of the high crush strength of the spheres, the initial composite workpiece can be forged or extruded into a high-strength part. The total time taken in processing from the raw ingredients to a finished part is typically 10 to 14 days depending on machining required.
    Keywords: Man/System Technology and Life Support
    Type: GSC-15348-1 , NASA Tech Briefs, September 2011; 15-16
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: We present follow-up observations with the Sunyaev-Zel'dovich Array (SZA) of optically-confirmed galaxy clusters found in the equatorial survey region of the Atacama Cosmology Telescope (ACT): ACT-CL J0022-0036, ACT-CL J2051+0057, and ACT-CL J2337+0016. ACT-CL J0022-0036 is a newly-discovered, massive ( approximately equals 10(exp 15) Solar M), high-redshift (z = 0.81) cluster revealed by ACT through the Sunyaev-Zeldovich effect (SZE). Deep, targeted observations with the SZA allow us to probe a broader range of cluster spatial scales, better disentangle cluster decrements from radio point source emission, and derive more robust integrated SZE flux and mass estimates than we can with ACT data alone. For the two clusters we detect with the SZA we compute integrated SZE signal and derive masses from the SZA data only. ACT-CL J2337+0016, also known as Abell 2631, has archival Chandra data that allow an additional X-ray-based mass estimate. Optical richness is also used to estimate cluster masses and shows good agreement with the SZE and X-ray-based estimates. Based on the point sources detected by the SZA in these three cluster fields and an extrapolation to ACT's frequency, we estimate that point sources could be contaminating the SZE decrement at the approx 〈 20% level for some fraction of clusters.
    Keywords: Astrophysics; Astronomy
    Type: GSFC-E-DAA-TN9423
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-12
    Description: Context. Transient neutrino sources such as Gamma-Ray Bursts (GRBs) and Supernovae (SNe) are hypothesized to emit bursts of high-energy neutrinos on a time-scale of 〈 or approx.100 s. While GRB neutrinos would be produced in high relativistic jets, core-collapse SNe might host soft-relativistic jets, which become stalled in the outer layers of the progenitor star leading to an efficient production of high-energy neutrinos. Aims. To increase the sensitivity to these neutrinos and identify their sources, a low-threshold optical follow-up program for neutrino multiplets detected with the IceCube observatory has been implemented. Methods. If a neutrino multiplet, i.e. two or more neutrinos from the same direction within 100 s, is found by IceCube a trigger is sent to the Robotic Optical Transient Search Experiment, ROTSE. The 4 ROTSE telescopes immediately start an observation program of the corresponding region of the sky in order to detect an optical counterpart to the neutrino events. Results. No statistically significant excess in the rate of neutrino multiplets has been observed and furthermore no coincidence with an optical counterpart was found. Conclusions. The search allows, for the first time, to set stringent limits on current models predicting a high-energy neutrino flux from soft relativistic hadronic jets in core-collapse SNe. We conclude that a sub-population of SNe with typical Lorentz boost factor and jet energy of 10 and 3 x 10(exp 51) erg, respectively, does not exceed 4:2% at 90% confidence.
    Keywords: Astrophysics
    Type: GSFC.JA.5925.2012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-19
    Description: Authentic research opportunities in the classroom are most impactful when they are student-driven and inquiry-based. These experiences are even more powerful when they involve technology and meaningful connections with scientists. In today's classrooms, activities are driven by state required skills, education standards, and state mandated testing. Therefore, programs that incorporate authentic research must address the needs of teachers. NASA's Expedition Earth and Beyond (EEAB) Program has developed a framework that addresses teacher needs and incorporates the use of technology and access to mentors to promote and enhance authentic research in the classroom. EEAB is a student involvement program that facilitates student investigations of Earth or planetary comparisons using NASA data. To promote student-led research, EEAB provides standards-aligned, inquiry-based curricular resources, an implementation structure to facilitate research, educator professional development, and ongoing support. This framework also provides teachers with the option to incorporate the use of technology and connect students with a mentor, both of which can enrich student research experiences. The framework is structured by a modeled 9-step process of science which helps students organize their research. With more schools gaining increased access to technology, EEAB has created an option to help schools take advantage of students' interest and comfort with technology by leveraging the use of available technologies to enhance student research. The use of technology not only allows students to collaborate and share their research, it also provides a mechanism for them to work with a mentor. This framework was tested during the 2010/2011 school year. Team workspaces hosted on Wikispaces for Educators allow students to initiate their research and refine their research question initially without external input. This allows teams to work independently and rely on the skills and interests of team members. Once teams finalize their research question, they are assigned a mentor. The mentor introduces himself/herself, acknowledges the initial work the team has conducted, and asks a focused question to help open the lines of communication. Students continue to communicate with their mentor throughout their research. As research is completed, teams can share their investigation during a virtual presentation. These live presentations allow students to share their research with their mentor, other scientists, other students, parents, and school administrators. After the initial year of testing this authentic research process, EEAB is working to address the many lessons learned. This will allow the program to refine and improve the overall process in an effort to maximize the benefits. Combined, these powerful strategies provide a successful framework to help teachers enhance the skills and motivation of their students, preparing them to become the next generation of scientists, explorers, and STEM-literate citizens of our nation.
    Keywords: Social and Information Sciences (General)
    Type: ED53C-0805 , JSC-CN-25434 , AGU Fall Meeting 2011; Dec 05, 2011 - Dec 09, 2011; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...