ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-07-12
    Description: In eukaryotes, accurate chromosome segregation during mitosis and meiosis is coordinated by kinetochores, which are unique chromosomal sites for microtubule attachment. Centromeres specify the kinetochore formation sites on individual chromosomes, and are epigenetically marked by the assembly of nucleosomes containing the centromere-specific histone H3 variant, CENP-A. Although the underlying mechanism is unclear, centromere inheritance is probably dictated by the architecture of the centromeric nucleosome. Here we report the crystal structure of the human centromeric nucleosome containing CENP-A and its cognate alpha-satellite DNA derivative (147 base pairs). In the human CENP-A nucleosome, the DNA is wrapped around the histone octamer, consisting of two each of histones H2A, H2B, H4 and CENP-A, in a left-handed orientation. However, unlike the canonical H3 nucleosome, only the central 121 base pairs of the DNA are visible. The thirteen base pairs from both ends of the DNA are invisible in the crystal structure, and the alphaN helix of CENP-A is shorter than that of H3, which is known to be important for the orientation of the DNA ends in the canonical H3 nucleosome. A structural comparison of the CENP-A and H3 nucleosomes revealed that CENP-A contains two extra amino acid residues (Arg 80 and Gly 81) in the loop 1 region, which is completely exposed to the solvent. Mutations of the CENP-A loop 1 residues reduced CENP-A retention at the centromeres in human cells. Therefore, the CENP-A loop 1 may function in stabilizing the centromeric chromatin containing CENP-A, possibly by providing a binding site for trans-acting factors. The structure provides the first atomic-resolution picture of the centromere-specific nucleosome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tachiwana, Hiroaki -- Kagawa, Wataru -- Shiga, Tatsuya -- Osakabe, Akihisa -- Miya, Yuta -- Saito, Kengo -- Hayashi-Takanaka, Yoko -- Oda, Takashi -- Sato, Mamoru -- Park, Sam-Yong -- Kimura, Hiroshi -- Kurumizaka, Hitoshi -- England -- Nature. 2011 Jul 10;476(7359):232-5. doi: 10.1038/nature10258.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21743476" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Autoantigens/*chemistry/metabolism ; Base Sequence ; Chromosomal Proteins, Non-Histone/*chemistry/metabolism ; Crystallography, X-Ray ; DNA/*chemistry/genetics/metabolism ; Histones/*chemistry/metabolism ; Humans ; Models, Molecular ; Molecular Conformation ; Molecular Sequence Data ; Nucleosomes/*chemistry/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-07-05
    Description: A critical shortage of donor organs for treating end-stage organ failure highlights the urgent need for generating organs from human induced pluripotent stem cells (iPSCs). Despite many reports describing functional cell differentiation, no studies have succeeded in generating a three-dimensional vascularized organ such as liver. Here we show the generation of vascularized and functional human liver from human iPSCs by transplantation of liver buds created in vitro (iPSC-LBs). Specified hepatic cells (immature endodermal cells destined to track the hepatic cell fate) self-organized into three-dimensional iPSC-LBs by recapitulating organogenetic interactions between endothelial and mesenchymal cells. Immunostaining and gene-expression analyses revealed a resemblance between in vitro grown iPSC-LBs and in vivo liver buds. Human vasculatures in iPSC-LB transplants became functional by connecting to the host vessels within 48 hours. The formation of functional vasculatures stimulated the maturation of iPSC-LBs into tissue resembling the adult liver. Highly metabolic iPSC-derived tissue performed liver-specific functions such as protein production and human-specific drug metabolism without recipient liver replacement. Furthermore, mesenteric transplantation of iPSC-LBs rescued the drug-induced lethal liver failure model. To our knowledge, this is the first report demonstrating the generation of a functional human organ from pluripotent stem cells. Although efforts must ensue to translate these techniques to treatments for patients, this proof-of-concept demonstration of organ-bud transplantation provides a promising new approach to study regenerative medicine.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Takebe, Takanori -- Sekine, Keisuke -- Enomura, Masahiro -- Koike, Hiroyuki -- Kimura, Masaki -- Ogaeri, Takunori -- Zhang, Ran-Ran -- Ueno, Yasuharu -- Zheng, Yun-Wen -- Koike, Naoto -- Aoyama, Shinsuke -- Adachi, Yasuhisa -- Taniguchi, Hideki -- England -- Nature. 2013 Jul 25;499(7459):481-4. doi: 10.1038/nature12271. Epub 2013 Jul 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan. (ttakebe@yokohama-cu.ac.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23823721" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Lineage ; Drug-Induced Liver Injury/therapy ; Endothelial Cells/cytology/metabolism/transplantation ; Gene Expression Profiling ; Humans ; Induced Pluripotent Stem Cells/*cytology/metabolism/transplantation ; Liver/*blood supply/embryology/metabolism/*physiology ; Liver Failure/therapy ; Liver Transplantation ; Mesoderm/cytology/metabolism/transplantation ; Mice ; Regenerative Medicine/*methods ; Tissue Culture Techniques
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...