ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (40)
  • Other Sources
  • Crystallography, X-Ray  (40)
  • 2010-2014  (40)
  • 1975-1979
  • 1970-1974
  • 2010  (40)
  • Natural Sciences in General  (40)
Collection
  • Articles  (40)
  • Other Sources
Years
  • 2010-2014  (40)
  • 1975-1979
  • 1970-1974
Year
Topic
  • 1
    Publication Date: 2010-12-18
    Description: Recognition of modified histone species by distinct structural domains within 'reader' proteins plays a critical role in the regulation of gene expression. Readers that simultaneously recognize histones with multiple marks allow transduction of complex chromatin modification patterns into specific biological outcomes. Here we report that chromatin regulator tripartite motif-containing 24 (TRIM24) functions in humans as a reader of dual histone marks by means of tandem plant homeodomain (PHD) and bromodomain (Bromo) regions. The three-dimensional structure of the PHD-Bromo region of TRIM24 revealed a single functional unit for combinatorial recognition of unmodified H3K4 (that is, histone H3 unmodified at lysine 4, H3K4me0) and acetylated H3K23 (histone H3 acetylated at lysine 23, H3K23ac) within the same histone tail. TRIM24 binds chromatin and oestrogen receptor to activate oestrogen-dependent genes associated with cellular proliferation and tumour development. Aberrant expression of TRIM24 negatively correlates with survival of breast cancer patients. The PHD-Bromo of TRIM24 provides a structural rationale for chromatin activation through a non-canonical histone signature, establishing a new route by which chromatin readers may influence cancer pathogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058826/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058826/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tsai, Wen-Wei -- Wang, Zhanxin -- Yiu, Teresa T -- Akdemir, Kadir C -- Xia, Weiya -- Winter, Stefan -- Tsai, Cheng-Yu -- Shi, Xiaobing -- Schwarzer, Dirk -- Plunkett, William -- Aronow, Bruce -- Gozani, Or -- Fischle, Wolfgang -- Hung, Mien-Chie -- Patel, Dinshaw J -- Barton, Michelle Craig -- GM079641/GM/NIGMS NIH HHS/ -- GM081627/GM/NIGMS NIH HHS/ -- P01 GM081627/GM/NIGMS NIH HHS/ -- P01 GM081627-010003/GM/NIGMS NIH HHS/ -- P01 GM081627-020003/GM/NIGMS NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- P30DK078392-01/DK/NIDDK NIH HHS/ -- T32 HD07325/HD/NICHD NIH HHS/ -- U54 RR025216/RR/NCRR NIH HHS/ -- UL1 TR000077/TR/NCATS NIH HHS/ -- England -- Nature. 2010 Dec 16;468(7326):927-32. doi: 10.1038/nature09542.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Program in Genes and Development, Graduate School of Biomedical Sciences, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21164480" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Breast Neoplasms/*genetics/*metabolism/pathology ; Carrier Proteins/chemistry/genetics/*metabolism ; Cell Line, Tumor ; Chromatin/metabolism ; Chromatin Assembly and Disassembly ; Crystallography, X-Ray ; Estrogen Receptor alpha/metabolism ; Estrogens/metabolism ; *Gene Expression Regulation, Neoplastic/genetics ; HEK293 Cells ; Histones/chemistry/*metabolism ; Humans ; Methylation ; Protein Array Analysis ; Protein Binding ; Protein Structure, Tertiary ; Substrate Specificity ; Survival Rate
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-11-12
    Description: Mononuclear iron-containing oxygenases conduct a diverse variety of oxidation functions in biology, including the oxidative demethylation of methylated nucleic acids and histones. Escherichia coli AlkB is the first such enzyme that was discovered to repair methylated nucleic acids, which are otherwise cytotoxic and/or mutagenic. AlkB human homologues are known to play pivotal roles in various processes. Here we present structural characterization of oxidation intermediates for these demethylases. Using a chemical cross-linking strategy, complexes of AlkB-double stranded DNA (dsDNA) containing 1,N(6)-etheno adenine (epsilonA), N(3)-methyl thymine (3-meT) and N(3)-methyl cytosine (3-meC) are stabilized and crystallized, respectively. Exposing these crystals, grown under anaerobic conditions containing iron(II) and alpha-ketoglutarate (alphaKG), to dioxygen initiates oxidation in crystallo. Glycol (from epsilonA) and hemiaminal (from 3-meT) intermediates are captured; a zwitterionic intermediate (from 3-meC) is also proposed, based on crystallographic observations and computational analysis. The observation of these unprecedented intermediates provides direct support for the oxidative demethylation mechanism for these demethylases. This study also depicts a general mechanistic view of how a methyl group is oxidatively removed from different biological substrates.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058853/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058853/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yi, Chengqi -- Jia, Guifang -- Hou, Guanhua -- Dai, Qing -- Zhang, Wen -- Zheng, Guanqun -- Jian, Xing -- Yang, Cai-Guang -- Cui, Qiang -- He, Chuan -- GM071440/GM/NIGMS NIH HHS/ -- GM084028/GM/NIGMS NIH HHS/ -- R01 GM071440/GM/NIGMS NIH HHS/ -- R01 GM071440-06/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Nov 11;468(7321):330-3. doi: 10.1038/nature09497.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21068844" target="_blank"〉PubMed〈/a〉
    Keywords: Catalysis ; Cross-Linking Reagents/chemistry ; Crystallization ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; *DNA Repair ; DNA Repair Enzymes/metabolism ; Dioxygenases/chemistry/*metabolism ; Escherichia coli/*enzymology ; Escherichia coli Proteins/chemistry/*metabolism ; Humans ; Iron/*metabolism ; Ketoglutaric Acids/metabolism ; Methylation ; Mixed Function Oxygenases/chemistry/*metabolism ; Models, Molecular ; Oxidation-Reduction ; Static Electricity ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-04-07
    Description: Targeting of proteins to appropriate subcellular compartments is a crucial process in all living cells. Secretory and membrane proteins usually contain an amino-terminal signal peptide, which is recognized by the signal recognition particle (SRP) when nascent polypeptide chains emerge from the ribosome. The SRP-ribosome nascent chain complex is then targeted through its GTP-dependent interaction with SRP receptor to the protein-conducting channel on endoplasmic reticulum membrane in eukaryotes or plasma membrane in bacteria. A universally conserved component of SRP (refs 1, 2), SRP54 or its bacterial homologue, fifty-four homologue (Ffh), binds the signal peptides, which have a highly divergent sequence divisible into a positively charged n-region, an h-region commonly containing 8-20 hydrophobic residues and a polar c-region. No structure has been reported that exemplifies SRP54 binding of any signal sequence. Here we have produced a fusion protein between Sulfolobus solfataricus SRP54 (Ffh) and a signal peptide connected via a flexible linker. This fusion protein oligomerizes in solution through interaction between the SRP54 and signal peptide moieties belonging to different chains, and it is functional, as demonstrated by its ability to bind SRP RNA and SRP receptor FtsY. We present the crystal structure at 3.5 A resolution of an SRP54-signal peptide complex in the dimer, which reveals how a signal sequence is recognized by SRP54.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2897128/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2897128/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Janda, Claudia Y -- Li, Jade -- Oubridge, Chris -- Hernandez, Helena -- Robinson, Carol V -- Nagai, Kiyoshi -- MC_U105184330/Medical Research Council/United Kingdom -- U.1051.04.016(78933)/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- England -- Nature. 2010 May 27;465(7297):507-10. doi: 10.1038/nature08870. Epub 2010 Apr 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20364120" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/metabolism ; Crystallography, X-Ray ; Mass Spectrometry ; Models, Molecular ; Molecular Sequence Data ; Protein Binding ; Protein Multimerization ; Protein Sorting Signals/*physiology ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Receptors, Cytoplasmic and Nuclear/metabolism ; Receptors, Virus/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Signal Recognition Particle/*chemistry/*metabolism ; Structure-Activity Relationship ; Sulfolobus solfataricus/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-08-06
    Description: Despite the success of genomics in identifying new essential bacterial genes, there is a lack of sustainable leads in antibacterial drug discovery to address increasing multidrug resistance. Type IIA topoisomerases cleave and religate DNA to regulate DNA topology and are a major class of antibacterial and anticancer drug targets, yet there is no well developed structural basis for understanding drug action. Here we report the 2.1 A crystal structure of a potent, new class, broad-spectrum antibacterial agent in complex with Staphylococcus aureus DNA gyrase and DNA, showing a new mode of inhibition that circumvents fluoroquinolone resistance in this clinically important drug target. The inhibitor 'bridges' the DNA and a transient non-catalytic pocket on the two-fold axis at the GyrA dimer interface, and is close to the active sites and fluoroquinolone binding sites. In the inhibitor complex the active site seems poised to cleave the DNA, with a single metal ion observed between the TOPRIM (topoisomerase/primase) domain and the scissile phosphate. This work provides new insights into the mechanism of topoisomerase action and a platform for structure-based drug design of a new class of antibacterial agents against a clinically proven, but conformationally flexible, enzyme class.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bax, Benjamin D -- Chan, Pan F -- Eggleston, Drake S -- Fosberry, Andrew -- Gentry, Daniel R -- Gorrec, Fabrice -- Giordano, Ilaria -- Hann, Michael M -- Hennessy, Alan -- Hibbs, Martin -- Huang, Jianzhong -- Jones, Emma -- Jones, Jo -- Brown, Kristin Koretke -- Lewis, Ceri J -- May, Earl W -- Saunders, Martin R -- Singh, Onkar -- Spitzfaden, Claus E -- Shen, Carol -- Shillings, Anthony -- Theobald, Andrew J -- Wohlkonig, Alexandre -- Pearson, Neil D -- Gwynn, Michael N -- Wellcome Trust/United Kingdom -- England -- Nature. 2010 Aug 19;466(7309):935-40. doi: 10.1038/nature09197. Epub 2010 Aug 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Discovery Research, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK. benjamin.d.bax@gsk.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20686482" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-Bacterial Agents/*chemistry/metabolism/*pharmacology ; Apoenzymes/chemistry/metabolism ; Arginine/metabolism ; Aspartic Acid/metabolism ; Binding Sites ; Catalytic Domain ; Ciprofloxacin/chemistry/metabolism ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; DNA Cleavage ; DNA Gyrase/*chemistry/metabolism ; DNA, Superhelical/chemistry/metabolism ; Drug Design ; Drug Resistance ; Escherichia coli/enzymology ; Manganese/metabolism ; Models, Molecular ; Protein Conformation ; Quinolines/*chemistry/metabolism/*pharmacology ; Quinolones/chemistry/metabolism ; Staphylococcus aureus/*enzymology ; Structure-Activity Relationship ; *Topoisomerase II Inhibitors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-10-12
    Description: Chemokine receptors are critical regulators of cell migration in the context of immune surveillance, inflammation, and development. The G protein-coupled chemokine receptor CXCR4 is specifically implicated in cancer metastasis and HIV-1 infection. Here we report five independent crystal structures of CXCR4 bound to an antagonist small molecule IT1t and a cyclic peptide CVX15 at 2.5 to 3.2 angstrom resolution. All structures reveal a consistent homodimer with an interface including helices V and VI that may be involved in regulating signaling. The location and shape of the ligand-binding sites differ from other G protein-coupled receptors and are closer to the extracellular surface. These structures provide new clues about the interactions between CXCR4 and its natural ligand CXCL12, and with the HIV-1 glycoprotein gp120.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074590/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074590/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Beili -- Chien, Ellen Y T -- Mol, Clifford D -- Fenalti, Gustavo -- Liu, Wei -- Katritch, Vsevolod -- Abagyan, Ruben -- Brooun, Alexei -- Wells, Peter -- Bi, F Christopher -- Hamel, Damon J -- Kuhn, Peter -- Handel, Tracy M -- Cherezov, Vadim -- Stevens, Raymond C -- F32 GM083463/GM/NIGMS NIH HHS/ -- F32 GM083463-03/GM/NIGMS NIH HHS/ -- GM075915/GM/NIGMS NIH HHS/ -- P50 GM073197/GM/NIGMS NIH HHS/ -- P50 GM073197-07/GM/NIGMS NIH HHS/ -- R01 AI037113/AI/NIAID NIH HHS/ -- R01 AI037113-13/AI/NIAID NIH HHS/ -- R01 GM071872/GM/NIGMS NIH HHS/ -- R01 GM081763/GM/NIGMS NIH HHS/ -- R01 GM081763-03/GM/NIGMS NIH HHS/ -- R01 GM089857/GM/NIGMS NIH HHS/ -- R21 AI087189/AI/NIAID NIH HHS/ -- R21 AI087189-02/AI/NIAID NIH HHS/ -- R21 RR025336/RR/NCRR NIH HHS/ -- R21 RR025336-01A1/RR/NCRR NIH HHS/ -- U54 GM074961/GM/NIGMS NIH HHS/ -- U54 GM074961-050001/GM/NIGMS NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Nov 19;330(6007):1066-71. doi: 10.1126/science.1194396. Epub 2010 Oct 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20929726" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Chemokine CXCL12 ; Crystallography, X-Ray ; HIV Envelope Protein gp120/metabolism ; Humans ; Membrane Proteins ; Models, Molecular ; Protein Binding ; Protein Conformation ; Protein Multimerization ; Receptors, CXCR4/antagonists & inhibitors/*chemistry/metabolism ; Recombinant Proteins/chemistry ; Spodoptera ; Thiourea/analogs & derivatives/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-12-03
    Description: Chikungunya virus (CHIKV) is an emerging mosquito-borne alphavirus that has caused widespread outbreaks of debilitating human disease in the past five years. CHIKV invasion of susceptible cells is mediated by two viral glycoproteins, E1 and E2, which carry the main antigenic determinants and form an icosahedral shell at the virion surface. Glycoprotein E2, derived from furin cleavage of the p62 precursor into E3 and E2, is responsible for receptor binding, and E1 for membrane fusion. In the context of a concerted multidisciplinary effort to understand the biology of CHIKV, here we report the crystal structures of the precursor p62-E1 heterodimer and of the mature E3-E2-E1 glycoprotein complexes. The resulting atomic models allow the synthesis of a wealth of genetic, biochemical, immunological and electron microscopy data accumulated over the years on alphaviruses in general. This combination yields a detailed picture of the functional architecture of the 25 MDa alphavirus surface glycoprotein shell. Together with the accompanying report on the structure of the Sindbis virus E2-E1 heterodimer at acidic pH (ref. 3), this work also provides new insight into the acid-triggered conformational change on the virus particle and its inbuilt inhibition mechanism in the immature complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Voss, James E -- Vaney, Marie-Christine -- Duquerroy, Stephane -- Vonrhein, Clemens -- Girard-Blanc, Christine -- Crublet, Elodie -- Thompson, Andrew -- Bricogne, Gerard -- Rey, Felix A -- England -- Nature. 2010 Dec 2;468(7324):709-12. doi: 10.1038/nature09555.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut Pasteur, Departement de Virologie, Unite de Virologie Structurale, 25 rue du Dr Roux, 75724 Paris Cedex 15, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21124458" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Chikungunya virus/*chemistry ; Cryoelectron Microscopy ; Crystallography, X-Ray ; Drosophila melanogaster ; Hydrogen-Ion Concentration ; Membrane Glycoproteins/*chemistry ; Models, Molecular ; Multiprotein Complexes/chemistry ; Protein Multimerization ; Protein Precursors/chemistry ; Protein Structure, Quaternary ; Viral Envelope Proteins/*chemistry ; Viral Fusion Proteins/chemistry ; Virion/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-10-15
    Description: The pre-T-cell antigen receptor (pre-TCR), expressed by immature thymocytes, has a pivotal role in early T-cell development, including TCR beta-selection, survival and proliferation of CD4(-)CD8(-) double-negative thymocytes, and subsequent alphabeta T-cell lineage differentiation. Whereas alphabetaTCR ligation by the peptide-loaded major histocompatibility complex initiates T-cell signalling, pre-TCR-induced signalling occurs by means of a ligand-independent dimerization event. The pre-TCR comprises an invariant alpha-chain (pre-Talpha) that pairs with any TCR beta-chain (TCRbeta) following successful TCR beta-gene rearrangement. Here we provide the basis of pre-Talpha-TCRbeta assembly and pre-TCR dimerization. The pre-Talpha chain comprised a single immunoglobulin-like domain that is structurally distinct from the constant (C) domain of the TCR alpha-chain; nevertheless, the mode of association between pre-Talpha and TCRbeta mirrored that mediated by the Calpha-Cbeta domains of the alphabetaTCR. The pre-TCR had a propensity to dimerize in solution, and the molecular envelope of the pre-TCR dimer correlated well with the observed head-to-tail pre-TCR dimer. This mode of pre-TCR dimerization enabled the pre-Talpha domain to interact with the variable (V) beta domain through residues that are highly conserved across the Vbeta and joining (J) beta gene families, thus mimicking the interactions at the core of the alphabetaTCR's Valpha-Vbeta interface. Disruption of this pre-Talpha-Vbeta dimer interface abrogated pre-TCR dimerization in solution and impaired pre-TCR expression on the cell surface. Accordingly, we provide a mechanism of pre-TCR self-association that allows the pre-Talpha chain to simultaneously 'sample' the correct folding of both the V and C domains of any TCR beta-chain, regardless of its ultimate specificity, which represents a critical checkpoint in T-cell development. This unusual dual-chaperone-like sensing function of pre-Talpha represents a unique mechanism in nature whereby developmental quality control regulates the expression and signalling of an integral membrane receptor complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pang, Siew Siew -- Berry, Richard -- Chen, Zhenjun -- Kjer-Nielsen, Lars -- Perugini, Matthew A -- King, Glenn F -- Wang, Christina -- Chew, Sock Hui -- La Gruta, Nicole L -- Williams, Neal K -- Beddoe, Travis -- Tiganis, Tony -- Cowieson, Nathan P -- Godfrey, Dale I -- Purcell, Anthony W -- Wilce, Matthew C J -- McCluskey, James -- Rossjohn, Jamie -- England -- Nature. 2010 Oct 14;467(7317):844-8. doi: 10.1038/nature09448.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20944746" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Gene Rearrangement, T-Lymphocyte/genetics ; Humans ; Models, Molecular ; Mutation ; Protein Folding ; *Protein Multimerization ; Protein Structure, Tertiary ; Receptors, Antigen, T-Cell/*chemistry/genetics/*metabolism ; Receptors, Antigen, T-Cell, alpha-beta/chemistry/metabolism ; Signal Transduction ; Solutions ; T-Lymphocytes/cytology/immunology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-09-25
    Description: Gram-negative bacteria, such as Escherichia coli, frequently use tripartite efflux complexes in the resistance-nodulation-cell division (RND) family to expel various toxic compounds from the cell. The efflux system CusCBA is responsible for extruding biocidal Cu(I) and Ag(I) ions. No previous structural information was available for the heavy-metal efflux (HME) subfamily of the RND efflux pumps. Here we describe the crystal structures of the inner-membrane transporter CusA in the absence and presence of bound Cu(I) or Ag(I). These CusA structures provide new structural information about the HME subfamily of RND efflux pumps. The structures suggest that the metal-binding sites, formed by a three-methionine cluster, are located within the cleft region of the periplasmic domain. This cleft is closed in the apo-CusA form but open in the CusA-Cu(I) and CusA-Ag(I) structures, which directly suggests a plausible pathway for ion export. Binding of Cu(I) and Ag(I) triggers significant conformational changes in both the periplasmic and transmembrane domains. The crystal structure indicates that CusA has, in addition to the three-methionine metal-binding site, four methionine pairs-three located in the transmembrane region and one in the periplasmic domain. Genetic analysis and transport assays suggest that CusA is capable of actively picking up metal ions from the cytosol, using these methionine pairs or clusters to bind and export metal ions. These structures suggest a stepwise shuttle mechanism for transport between these sites.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946090/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946090/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Long, Feng -- Su, Chih-Chia -- Zimmermann, Michael T -- Boyken, Scott E -- Rajashankar, Kanagalaghatta R -- Jernigan, Robert L -- Yu, Edward W -- GM 072014/GM/NIGMS NIH HHS/ -- GM 074027/GM/NIGMS NIH HHS/ -- GM 081680/GM/NIGMS NIH HHS/ -- GM 086431/GM/NIGMS NIH HHS/ -- R01 GM072014/GM/NIGMS NIH HHS/ -- R01 GM074027/GM/NIGMS NIH HHS/ -- R01 GM074027-05/GM/NIGMS NIH HHS/ -- R01 GM086431/GM/NIGMS NIH HHS/ -- R01 GM086431-01A2/GM/NIGMS NIH HHS/ -- RR-15301/RR/NCRR NIH HHS/ -- England -- Nature. 2010 Sep 23;467(7314):484-8. doi: 10.1038/nature09395.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular, Cellular and Developmental Biology Interdepartmental Graduate Program, Iowa State University, Iowa 50011, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20865003" target="_blank"〉PubMed〈/a〉
    Keywords: Apoproteins/chemistry/metabolism ; Binding Sites ; Cell Membrane/metabolism ; Copper/chemistry/*metabolism ; Crystallography, X-Ray ; Cytosol/metabolism ; Escherichia coli/*chemistry ; Escherichia coli Proteins/*chemistry/*metabolism ; Ion Transport ; Membrane Transport Proteins/*chemistry/*metabolism ; Methionine/*metabolism ; Models, Biological ; Models, Molecular ; Periplasm/metabolism ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Silver/chemistry/*metabolism ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-09-30
    Description: Cell-cell signalling of semaphorin ligands through interaction with plexin receptors is important for the homeostasis and morphogenesis of many tissues and is widely studied for its role in neural connectivity, cancer, cell migration and immune responses. SEMA4D and Sema6A exemplify two diverse vertebrate, membrane-spanning semaphorin classes (4 and 6) that are capable of direct signalling through members of the two largest plexin classes, B and A, respectively. In the absence of any structural information on the plexin ectodomain or its interaction with semaphorins the extracellular specificity and mechanism controlling plexin signalling has remained unresolved. Here we present crystal structures of cognate complexes of the semaphorin-binding regions of plexins B1 and A2 with semaphorin ectodomains (human PLXNB1(1-2)-SEMA4D(ecto) and murine PlxnA2(1-4)-Sema6A(ecto)), plus unliganded structures of PlxnA2(1-4) and Sema6A(ecto). These structures, together with biophysical and cellular assays of wild-type and mutant proteins, reveal that semaphorin dimers independently bind two plexin molecules and that signalling is critically dependent on the avidity of the resulting bivalent 2:2 complex (monomeric semaphorin binds plexin but fails to trigger signalling). In combination, our data favour a cell-cell signalling mechanism involving semaphorin-stabilized plexin dimerization, possibly followed by clustering, which is consistent with previous functional data. Furthermore, the shared generic architecture of the complexes, formed through conserved contacts of the amino-terminal seven-bladed beta-propeller (sema) domains of both semaphorin and plexin, suggests that a common mode of interaction triggers all semaphorin-plexin based signalling, while distinct insertions within or between blades of the sema domains determine binding specificity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3587840/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3587840/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Janssen, Bert J C -- Robinson, Ross A -- Perez-Branguli, Francesc -- Bell, Christian H -- Mitchell, Kevin J -- Siebold, Christian -- Jones, E Yvonne -- 082301/Wellcome Trust/United Kingdom -- 083111/Wellcome Trust/United Kingdom -- 10976/Cancer Research UK/United Kingdom -- A10976/Cancer Research UK/United Kingdom -- A3964/Cancer Research UK/United Kingdom -- A5261/Cancer Research UK/United Kingdom -- G0700232/Medical Research Council/United Kingdom -- G0700232(82098)/Medical Research Council/United Kingdom -- G0900084/Medical Research Council/United Kingdom -- G9900061/Medical Research Council/United Kingdom -- G9900061(69203)/Medical Research Council/United Kingdom -- Cancer Research UK/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2010 Oct 28;467(7319):1118-22. doi: 10.1038/nature09468. Epub 2010 Sep 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20877282" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD/chemistry/genetics/metabolism ; Binding Sites ; Cell Adhesion Molecules/*chemistry/genetics/*metabolism ; Cell Communication ; Crystallography, X-Ray ; Humans ; Ligands ; Mice ; Mice, Inbred C57BL ; Models, Molecular ; NIH 3T3 Cells ; Nerve Tissue Proteins/*chemistry/genetics/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Receptors, Cell Surface/chemistry/genetics/metabolism ; Semaphorins/*chemistry/genetics/*metabolism ; *Signal Transduction ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-02-13
    Description: We show that metal-organic frameworks (MOFs) can incorporate a large number of different functionalities on linking groups in a way that mixes the linker, rather than forming separate domains. We made complex MOFs from 1,4-benzenedicarboxylate (denoted by "A" in this work) and its derivatives -NH2, -Br, -(Cl)2, -NO2, -(CH3)2, -C4H4, -(OC3H5)2, and -(OC7H7)2 (denoted by "B" to "I," respectively) to synthesize 18 multivariate (MTV) MOF-5 type structures that contain up to eight distinct functionalities in one phase. The backbone (zinc oxide and phenylene units) of these structures is ordered, but the distribution of functional groups is disordered. The complex arrangements of several functional groups within the pores can lead to properties that are not simply linear sums of those of the pure components. For example, a member of this series, MTV-MOF-5-EHI, exhibits up to 400% better selectivity for carbon dioxide over carbon monoxide compared with its best same-link counterparts.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Deng, Hexiang -- Doonan, Christian J -- Furukawa, Hiroyasu -- Ferreira, Ricardo B -- Towne, John -- Knobler, Carolyn B -- Wang, Bo -- Yaghi, Omar M -- New York, N.Y. -- Science. 2010 Feb 12;327(5967):846-50. doi: 10.1126/science.1181761.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉California Nanosystems Institute, University of California-Los Angeles (UCLA)-Department of Energy (DOE) Institute of Genomics and Proteomics, Department of Chemistry and Biochemistry, UCLA, 607 Charles E. Young Drive East, Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20150497" target="_blank"〉PubMed〈/a〉
    Keywords: Carbon Dioxide/chemistry ; Carbon Monoxide/chemistry ; Chemical Phenomena ; Crystallization ; Crystallography, X-Ray ; Magnetic Resonance Spectroscopy ; Metals/*chemistry ; Models, Chemical ; Models, Molecular ; Molecular Structure ; Phthalic Acids/*chemistry ; Zinc Oxide/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...