ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009  (6)
  • 2008  (6)
Collection
Years
  • 2005-2009  (6)
Year
  • 1
    Publication Date: 2008-11-01
    Description: A case study of a double dryline on 22 May 2002 is presented. Mobile, 3-mm-wavelength Doppler radars from the University of Massachusetts and the University of Wyoming (Wyoming cloud radar) were used to collect very fine resolution vertical-velocity data in the vicinity of each of the moisture gradients associated with the drylines. Very narrow (50–100 m wide) channels of strong upward vertical velocity (up to 8 m s–1) were measured in the convergence zone of the easternmost dryline, larger in magnitude than reported with previous drylines. Distinct areas of descending motion were evident to the east and west of both drylines. Radar data are interpreted in the context of other observational platforms available during the International H2O Project (IHOP-2002). a variational ground-based mobile radar data processing technique was developed and applied to pseudo-dual-Doppler data collected during a rolling range-height indicator deployment. It was found that there was a secondary (vertical) circulation normal to the easternmost moisture gradient; the circulation comprised an easterly component near-surface flow to the east, a strong upward vertical component in the convergence zone, a westerly return, flow above the convective boundary layer, and numerous regions of descending motion, the most prominent approximately 3–5 km to the east of the surface convergence zone.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-11-01
    Description: The nature of the different types of surface boundaries that appear in the southern plains of the United States during the convectively active season is reviewed. The following boundaries are discussed: fronts, the dryline, troughs, and outflow boundaries, The boundaries are related to their environment and to local topography. The role these boundaries might play in the initiation of convective storms is emphasized. The various types of boundary-related vertical circulations and their dynamics are discussed. In particular, quasigeostrophic and semigeostrophic dynamics, and the dynamics of solenoidal circulations, density currents, boundary layers, and gravity waves are considered. Miscellaneous topics pertinent to convective storms and their relationship to surface boundaries such as along-the-boundary variability, boundary collisions, and the role of vertical shear are also discussed. Although some cases of storm initiation along surface boundaries have been well documented using research datasets collected during comprehensive field experiments, much of what we know is based only on empirical forecasting and nowcasting experience. It is suggested that many problems relating to convective-storm formation need to be explored in detail using real datasets with new observing systems and techniques, in conjunction with numerical simulation studies, and through climatological studies.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-12-01
    Description: On 15 May 2003, two ground-based, mobile, Doppler radars scanned a supercell that moved through the Texas Panhandle and cyclically produced mesocyclones. The two radars collected data from the storm during a rapid cyclic mesocyclogenesis stage and a more slowly evolving tornadic period. A 3-cm-wavelength radar scanned the supercell continuously for a short time after it was cyclic but close to the time of tornadogenesis. A 5-cm-wavelength radar scanned the supercell the entire time it exhibited cyclic behavior and for an additional 30 min after that. The volumetric data obtained with the 5-cm-wavelength radar allowed for the individual circulations to be analyzed at multiple levels in the supercell. Most of the circulations that eventually dissipated moved rearward with respect to storm motion and were located at distances progressively farther away from the region of rear-flank outflow. The circulations associated with a tornado did not move nearly as far rearward relative to the storm. The mean circulation diameters were approximately 1–4 km and had lifetimes of 10–30 min. Circulation dissipation often, but not always, occurred following decreases in circulation diameter, while changes in maximum radial wind shear were not reliable indicators of circulation dissipation. In one instance, a pair of circulations rotated cyclonically around, and moved toward, each other; the two circulations then combined to form one circulation. Single-Doppler radial velocities from both radars were used to assess the differences between the pretornadic circulations and the tornadic circulations. Storm outflow in the rear flank of the storm increased notably during the time cyclic mesocyclogenesis slowed and tornado formation commenced. Large storm-relative inflow likely advected the pretornadic circulations rearward in the absence of organized outflow. The development of strong outflow in the rear flank probably balanced the strong inflow, allowing the tornadic circulations to stay in areas rich in vertical vorticity generation.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-12-01
    Description: Downslope windstorms are of major concern to those living in and around Boulder, Colorado, often striking with little warning, occasionally bringing clear-air wind gusts of 35–50 m s−1 or higher, and producing widespread damage. Historically, numerical models used for forecasting these events had lower than desired accuracy. This observation provides the motivation to study the potential for improving windstorm forecasting through the use of linear and nonlinear statistical modeling techniques with a perfect prog approach. A 10-yr mountain-windstorm dataset and a set of 18 predictors are used to train and test the models. For the linear model, a stepwise regression is applied. It is difficult to determine which predictor is the most important, although significance testing suggests that 700-hPa flow is selected often. The nonlinear techniques employed, feedforward neural networks (NN) and support vector regression (SVR), do not filter out predictors as the former uses a hidden layer to account for the nonlinearities in the data, whereas the latter fits a kernel function to the data to optimize prediction. The models are evaluated using root-mean-square error (RMSE) and median residuals. The SVR model has the lowest forecast errors, consistently, and is not prone to creating outlier forecasts. Stepwise linear regression (LR) yielded results that were accurate to within an RMSE of 8 m s−1; whereas an NN had errors of 7–9 m s−1 and SVR had errors of 4–6 m s−1. For SVR, 85% of the forecasts predicted maximum wind gusts with an RMSE of less than 6 m s−1 and all forecasts predicted wind gusts with an RMSE of below 12 m s−1. The LR method performed slightly better in most evaluations than NNs; however, SVR was the optimal technique.
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2008-10-01
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2008-07-01
    Description: This brief case study describes the unusually benign environment in which a funnel cloud formed along a line of convective towers during the summer in Kansas. The parent cloud line was solitary and very narrow, yet organized on the mesoscale. The cloud line appeared to be best correlated with a zone of horizontal temperature gradient to the northwest of cool (evaporatively produced) outflow from an area of precipitation located just to the rear of a cold front. Implications for forecasting such an event are noted.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...