ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Spacecraft Design, Testing and Performance  (5)
  • Child  (2)
  • FLUID MECHANICS AND HEAT TRANSFER
  • 2005-2009  (7)
  • 1990-1994
  • 1930-1934
  • 2008  (7)
Collection
Keywords
Years
  • 2005-2009  (7)
  • 1990-1994
  • 1930-1934
Year
  • 1
    Publication Date: 2008-03-14
    Description: The autosomal dominant hyper-IgE syndrome (HIES, 'Job's syndrome') is characterized by recurrent and often severe pulmonary infections, pneumatoceles, eczema, staphylococcal abscesses, mucocutaneous candidiasis, and abnormalities of bone and connective tissue. Mutations presumed to underlie HIES have recently been identified in stat3, the gene encoding STAT3 (signal transducer and activator of transcription 3) (refs 3, 4). Although impaired production of interferon-gamma and tumour-necrosis factor by T cells, diminished memory T-cell populations, decreased delayed-type-hypersensitivity responses and decreased in vitro lymphoproliferation in response to specific antigens have variably been described, specific immunological abnormalities that can explain the unique susceptibility to particular infections seen in HIES have not yet been defined. Here we show that interleukin (IL)-17 production by T cells is absent in HIES individuals. We observed that ex vivo T cells from subjects with HIES failed to produce IL-17, but not IL-2, tumour-necrosis factor or interferon-gamma, on mitogenic stimulation with staphylococcal enterotoxin B or on antigenic stimulation with Candida albicans or streptokinase. Purified naive T cells were unable to differentiate into IL-17-producing (T(H)17) T helper cells in vitro and had lower expression of retinoid-related orphan receptor (ROR)-gammat, which is consistent with a crucial role for STAT3 signalling in the generation of T(H)17 cells. T(H)17 cells have emerged as an important subset of helper T cells that are believed to be critical in the clearance of fungal and extracellular bacterial infections. Thus, our data suggest that the inability to produce T(H)17 cells is a mechanism underlying the susceptibility to the recurrent infections commonly seen in HIES.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2864108/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2864108/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Milner, Joshua D -- Brenchley, Jason M -- Laurence, Arian -- Freeman, Alexandra F -- Hill, Brenna J -- Elias, Kevin M -- Kanno, Yuka -- Spalding, Christine -- Elloumi, Houda Z -- Paulson, Michelle L -- Davis, Joie -- Hsu, Amy -- Asher, Ava I -- O'Shea, John -- Holland, Steven M -- Paul, William E -- Douek, Daniel C -- Z99 AI999999/Intramural NIH HHS/ -- England -- Nature. 2008 Apr 10;452(7188):773-6. doi: 10.1038/nature06764. Epub 2008 Mar 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Immunology, National Institutes of Health, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18337720" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Candida albicans/immunology ; *Cell Differentiation ; Child ; Child, Preschool ; Enterotoxins/immunology ; Female ; *Genes, Dominant ; Humans ; Interferon-gamma/biosynthesis/immunology ; Interleukin-17/*biosynthesis ; Interleukin-2/biosynthesis/immunology ; Job Syndrome/genetics/*immunology/metabolism/*pathology ; Male ; Middle Aged ; Streptokinase/metabolism ; T-Lymphocytes, Helper-Inducer/immunology/*metabolism/*pathology ; Tumor Necrosis Factor-alpha/biosynthesis/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-03-29
    Description: Schizophrenia is a devastating neurodevelopmental disorder whose genetic influences remain elusive. We hypothesize that individually rare structural variants contribute to the illness. Microdeletions and microduplications 〉100 kilobases were identified by microarray comparative genomic hybridization of genomic DNA from 150 individuals with schizophrenia and 268 ancestry-matched controls. All variants were validated by high-resolution platforms. Novel deletions and duplications of genes were present in 5% of controls versus 15% of cases and 20% of young-onset cases, both highly significant differences. The association was independently replicated in patients with childhood-onset schizophrenia as compared with their parents. Mutations in cases disrupted genes disproportionately from signaling networks controlling neurodevelopment, including neuregulin and glutamate pathways. These results suggest that multiple, individually rare mutations altering genes in neurodevelopmental pathways contribute to schizophrenia.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Walsh, Tom -- McClellan, Jon M -- McCarthy, Shane E -- Addington, Anjene M -- Pierce, Sarah B -- Cooper, Greg M -- Nord, Alex S -- Kusenda, Mary -- Malhotra, Dheeraj -- Bhandari, Abhishek -- Stray, Sunday M -- Rippey, Caitlin F -- Roccanova, Patricia -- Makarov, Vlad -- Lakshmi, B -- Findling, Robert L -- Sikich, Linmarie -- Stromberg, Thomas -- Merriman, Barry -- Gogtay, Nitin -- Butler, Philip -- Eckstrand, Kristen -- Noory, Laila -- Gochman, Peter -- Long, Robert -- Chen, Zugen -- Davis, Sean -- Baker, Carl -- Eichler, Evan E -- Meltzer, Paul S -- Nelson, Stanley F -- Singleton, Andrew B -- Lee, Ming K -- Rapoport, Judith L -- King, Mary-Claire -- Sebat, Jonathan -- HD043569/HD/NICHD NIH HHS/ -- M01 RR000046/RR/NCRR NIH HHS/ -- MH061355/MH/NIMH NIH HHS/ -- MH061464/MH/NIMH NIH HHS/ -- MH061528/MH/NIMH NIH HHS/ -- NS052108/NS/NINDS NIH HHS/ -- R01 HD043569/HD/NICHD NIH HHS/ -- RR000046/RR/NCRR NIH HHS/ -- RR025014/RR/NCRR NIH HHS/ -- U01 MH061355/MH/NIMH NIH HHS/ -- U01 MH061464/MH/NIMH NIH HHS/ -- U01 MH061528/MH/NIMH NIH HHS/ -- U24 NS052108/NS/NINDS NIH HHS/ -- UL1 RR025014/RR/NCRR NIH HHS/ -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2008 Apr 25;320(5875):539-43. doi: 10.1126/science.1155174. Epub 2008 Mar 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18369103" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Age of Onset ; Amino Acid Sequence ; Brain/cytology/*growth & development/metabolism ; Case-Control Studies ; Child ; Excitatory Amino Acid Transporter 1/chemistry/genetics/physiology ; Female ; *Gene Deletion ; *Gene Duplication ; Genetic Predisposition to Disease ; Genome, Human ; Humans ; Male ; Molecular Sequence Data ; *Mutation ; Neurons/cytology/physiology ; Oligonucleotide Array Sequence Analysis ; Polymorphism, Single Nucleotide ; Receptor, Epidermal Growth Factor/chemistry/genetics/physiology ; Receptor, ErbB-4 ; Schizophrenia/*genetics/physiopathology ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-27
    Description: In less than two years, the National Aeronautics and Space Administration (NASA) will launch the Ares I-X mission. This will be the first flight of the Ares I crew launch vehicle, which, together with the Ares V cargo launch vehicle, will send humans to the Moon and beyond. Personnel from the Ares I-X Mission Management Office (MMO) are finalizing designs and fabricating vehicle hardware for an April 2009 launch. Ares I-X will be a suborbital development flight test that will gather critical data about the flight dynamics of the integrated launch vehicle stack; understand how to control its roll during flight; better characterize the severe stage separation environments that the upper stage engine will experience during future flights; and demonstrate the first stage recovery system. NASA also will modify the launch infrastructure and ground and mission operations. The Ares I-X Flight Test Vehicle (FTV) will incorporate flight and mockup hardware similar in mass and weight to the operational vehicle. It will be powered by a four-segment Solid Rocket Booster (SRB), which is currently in Shuttle inventory, and will include a fifth spacer segment and new forward structures to make the booster approximately the same size and weight as the five-segment SRB. The Ares I-X flight profile will closely approximate the flight conditions that the Ares I will experience through Mach 4.5, up to approximately130,OOO feet and through maximum dynamic pressure ("Max Q") of approximately 800 pounds per square foot. Data from the Ares I-X flight will support the Ares I Critical Design Review (CDR), scheduled for 2010. Work continues on Ares I-X design and hardware fabrication. All of the individual elements are undergoing CDRs, followed by an integrated vehicle CDR in March 2008. The various hardware elements are on schedule to begin deliveries to Kennedy Space Center (KSC) in early September 2008.
    Keywords: Spacecraft Design, Testing and Performance
    Type: MSFC-2060 , International Astronautical Conference; 29 Sep. 3 Oct. 2008; Glasgow; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Program to Optimize Simulated Trajectories II (POST2) is used as a basis for an end-to-end descent and landing trajectory simulation that is essential in determining design and integration capability and system performance of the lunar descent and landing system and environment models for the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. The POST2 simulation provides a six degree-of-freedom capability necessary to test, design and operate a descent and landing system for successful lunar landing. This paper presents advances in the development and model-implementation of the POST2 simulation, as well as preliminary system performance analysis, used for the testing and evaluation of ALHAT project system models.
    Keywords: Spacecraft Design, Testing and Performance
    Type: AIAA/AAS Astrodynamics Specialist Conference; Aug 18, 2008 - Aug 21, 2008; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: Thermal simulators (highly designed heater elements) developed at the Early Flight Fission Test Facility (EFF-TF) are used to simulate the heat from nuclear fission in a variety of reactor concepts. When inserted into the reactor geometry, the purpose of the thermal simulators is to deliver thermal power to the test article in the same fashion as if nuclear fuel were present. Considerable effort has been expended to mimic heat from fission as closely as possible. To accurately represent the fuel, the simulators should be capable of matching the overall properties of the nuclear fuel rather than simply matching the fuel temperatures. This includes matching thermal stresses in the pin, pin conductivities, total core power, and core power profile (axial and radial). This Technical Memorandum discusses the historical development of the thermal simulators used in nonnuclear testing at the EFF-TF and provides a basis for the development of the current series of thermal simulators. The status of current heater fabrication and testing is assessed, providing data and analyses for both successes and failures experienced in the heater development and testing program.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA/TM-2008-215466 , M-1235
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-12
    Description: A document discusses the concept of a demisable motor-drive-and-flywheel assembly [reaction-wheel assembly (RWA)] used in controlling the attitude of a spacecraft. Demisable as used here does not have its traditional legal meaning; instead, it signifies susceptible to melting, vaporizing, and/or otherwise disintegrating during re-entry of the spacecraft into the atmosphere of the Earth so as not to pose a hazard to anyone or anything on the ground. Prior RWAs include parts made of metals (e.g., iron, steel, and titanium) that melt at high temperatures and include structures of generally closed character that shield some parts (e.g., magnets) against re-entry heating. In a demisable RWA, the flywheel would be made of aluminum, which melts at a lower temperature. The flywheel web would not be a solid disk but would have a more open, nearly-spoke-like structure so that it would disintegrate more rapidly; hence, the flywheel rim would separate more rapidly so that parts shielded by the rim would be exposed sooner to re-entry heating. In addition, clearances between the flywheel and other components would be made greater, imparting a more open character and thus increasing the exposure of those components.
    Keywords: Spacecraft Design, Testing and Performance
    Type: GSC-14845-1 , NASA Tech Briefs, December 2008; 25
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: In less than two years, the National Aeronautics and Space Administration (NASA) will launch the Ares I-X mission. This will be the first flight of the Ares I crew launch vehicle, which, together with the Ares V cargo launch vehicle, will eventually send humans to the Moon, Mars, and beyond. As the countdown to this first Ares mission continues, personnel from across the Ares I-X Mission Management Office (MMO) are finalizing designs and fabricating vehicle hardware for an April 2009 launch. This paper will discuss the hardware and programmatic progress of the Ares I-X mission. Like the Apollo program, the Ares launch vehicles will rely upon extensive ground, flight, and orbital testing before sending the Orion crew exploration vehicle into space with humans on board. The first flight of Ares I, designated Ares I-X, will be a suborbital development flight test. Ares I-X gives NASA its first opportunity to gather critical data about the flight dynamics of the integrated launch vehicle stack; understand how to control its roll during flight; better characterize the severe stage separation environments that the upper stage engine will experience during future operational flights; and demonstrate the first stage recovery system. NASA also will begin modifying the launch infrastructure and fine-tuning ground and mission operations, as the agency makes the transition from the Space Shuttle to the Ares/Orion system.
    Keywords: Spacecraft Design, Testing and Performance
    Type: MSFC-2051 , AIAA Space 2008; Sep 09, 2008 - Sep 11, 2008; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...