ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lunar and Planetary Science and Exploration  (100)
  • ASTROPHYSICS
  • Condensed Matter: Electronic Properties, etc.
  • INSTRUMENTATION AND PHOTOGRAPHY
  • Life and Medical Sciences
  • 2015-2019  (43)
  • 2005-2009  (57)
  • 2019  (43)
  • 2007  (57)
Collection
Keywords
Years
  • 2015-2019  (43)
  • 2005-2009  (57)
Year
  • 11
    Publication Date: 2019-07-13
    Description: A better understanding of the early impact history of the terrestrial planets has been identified one of the highest priority science goals for solar system exploration. Crystallization ages of impact melt breccias from the Apollo 16 site in the central nearside lunar highlands show a pronounced clustering of ages from 3.75-3.95 Ga, with several impact events being recognized by the association of textural groups and distinct ages. Here we present new geochemical and petrologic data for Apollo 16 crystalline breccia 67955 that document a much older impact event with an age of 4.2 Ga.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science Conference; Mar 12, 2007 - Mar 16, 2007; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-13
    Description: A study of the Sm-Nd isotopic systematics of lunar Mg-suite troctolite 76335 was undertaken to further establish the early chronology of lunar magmatism. Because the Rb-Sr isotopic systematics of similar sample 76535 yielded an age of 4570 +/- 70 Ma [2, lambda = 1.402 x 10(exp -11)], 76335 was expected to yield an old age. In contrast, the Sm-Nd and K-Ar ages of 76535 indicate that the sample is approximately 4260 Ma old, one of the youngest ages obtained for a Mg-suite rock. This study establishes the age of 76335 and discusses the constraints placed on its petrogenesis by its Sm-Nd isotope systematics. The Sm-Nd isotopic system of lunar Mg-suite troctolite 76335 indicates an age of 4278 +/- 60 Ma with an initial epsilon (sup 143)(sub Nd) value of 0.06 +/- 0.39. These values are consistent with the Sm-Nd isotopic systematics of similar sample 76535. Thus, it appears that a robust Sm-Nd age can be determined from a highly brecciated lunar sample. The Sm-Nd isotopic systematics of troctolites 76335 and 76535 appear to be different from those dominating the Mg-suite norites and KREEP basalts. Further analysis of the Mg-suite must be completed to reveal the isotopic relationships of these early lunar rocks.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science Conference; Mar 12, 2007 - Mar 16, 2007; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-08-14
    Description: The concept of a crewed mission to a Near-Earth Object (NEO) has been analyzed in depth in 1989 as part of the Space Exploration Initiative. Since that time two other studies have investigated the possibility of sending similar missions to NEOs. A more recent study has been sponsored by the Advanced Programs Office within NASA's Constellation Program. This study team has representatives from across NASA and is currently examining the feasibility of sending a Crew Exploration Vehicle (CEV) to a near-Earth object (NEO). The ideal mission profile would involve a crew of 2 or 3 astronauts on a 90 to 120 day flight, which would include a 7 to 14 day stay for proximity operations at the target NEO. One of the significant advantages of this type of mission is that it strengthens and validates the foundational infrastructure for the Vision for Space Exploration (VSE) and Exploration Systems Architecture Study (ESAS) in the run up to the lunar sorties at the end of the next decade (approx.2020). Sending a human expedition to a NEO, within the context of the VSE and ESAS, demonstrates the broad utility of the Constellation Program s Orion (CEV) crew capsule and Ares (CLV) launch systems. This mission would be the first human expedition to an interplanetary body outside of the cislunar system. Also, it will help NASA regain crucial operational experience conducting human exploration missions outside of low Earth orbit, which humanity has not attempted in nearly 40 years.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 38th Lunar and Planetary Science Conference; Mar 12, 2007 - Mar 16, 2007; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-19
    Description: We report results of a recently-completed study of SPIRIT, a candidate NASA Origins Probe. SPIRIT is a spatial and spectral interferometer with an operating wavelength range 25 - 400 microns. SPIRIT will provide sub-arcsecond resolution images and spectra with resolution R = 3000 in a 1 arcmin field of view to accomplish three primary scientific objectives: (1) Learn how planetary systems form from protostellar disks, and how they acquire their chemical organization; (2) Characterize the family of extrasolar planetary systems by imaging the structure in debris disks to understand how and where planets form, and why some planets are ice giants and others are rocky; and (3) Learn how high-redshift galaxies formed and merged to form the present-day population of galaxies. Observations with SPIRIT will be complementary to those of the James Webb Space Telescope and the ground-based Atacama Large Millimeter Array. All three observatories could be operational contemporaneously. SPIRIT will pave the way to the 1 km maximum baseline interferometer known as the Submillimeter Probe of the Evolution of Cosmic Structure (SPECS). In addition to the SPIRIT mission concept, this talk will emphasize the importance of dense u-v plane coverage and describe some of the practical considerations associated with alternative interferometric baseline sampling schemes.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Committee on Space Research Conference "Advances in Far Infrared and Submillimeter Astrophysics"; Jul 17, 2006 - Jul 19, 2006; Beijing; China
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-08-14
    Description: The concept of a crewed mission to a near-Earth object (NEO) has been previously analyzed several times in the past. A more in depth feasibility study has been sponsored by the Advanced Projects Office within NASA's Constellation Program to examine the ability of a Crew Exploration Vehicle (CEV) to support a mission to a NEO. The national mission profile would involve a crew of 2 or 3 astronauts on a 90 to 120 day mission, which would include a 7 to 14 day stay for proximity operations at the target NEO.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on Science Associated with the Lunar Exploration Architecture; Feb 27, 2007 - Mar 02, 2007; Tempe, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-09-28
    Description: Current sheets (CSs) play a crucial role in the storage and conversion of magnetic energy in planetary magnetotails. Using highresolution magnetic field data from MAVEN spacecraft, we report the existence of super thin current sheets (STCSs) in the Martian magnetotail. The typical halfthickness of the STCSs is ~5 km, and it is much less than the gyroradius of thermal protons (p). The STCSs are embedded into a thicker sheet with L p forming a multiscale current configuration. The formation of STCS does not depend on ion composition, but it is controlled by the small value of the normal component of the magnetic field at the neutral plane (BN). A number of the observed multiscale CSs are located in the parametric map close to the tearingunstable domain, and thus, the inner STCS can provide an additional free energy to excite ion tearing mode in the Martian magnetotail.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN73224 , Geophysical Research Letters (ISSN 0094-8276) (e-ISSN 1944-8007); 46; 12; 6214-6222
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-06-11
    Description: Iapetus has preserved evidence that constrains the modeling of its geophysical history from the time of its accretion until now. The evidence is (a) its present 79.33-day rotation or spin rate, (b) its shape that corresponds to the equilibrium figure for a hydrostatic body rotating with a period of approximately 16 h, and (c) its high, equatorial ridge, which is unique in the Solar System. This paper reports the results of an investigation into the coupling between Iapetus' thermal and orbital evolution for a wide range of conditions including the spatial distributions with time of composition, porosity, short-lived radioactive isotopes (SLRI), and temperature. The thermal model uses conductive heat transfer with temperature-dependent conductivity. Only models with a thick lithosphere and an interior viscosity in the range of about the water ice melting point can explain the observed shape. Short-lived radioactive isotopes provide the heat needed to decrease porosity in Iapetus? early history. This increases thermal conductivity and allows the development of the strong lithosphere that is required to preserve the 16-h rotational shape and the high vertical relief of the topography. Long-lived radioactive isotopes and SLRI raise internal temperatures high enough that significant tidal dissipation can start, and despin Iapetus to synchronous rotation. This occurred several hundred million years after Iapetus formed. The models also constrain the time when Iapetus formed because the successful models are critically dependent upon having just the right amount of heat added by SLRI decay in this early period. The amount of heat available from short-lived radioactivity is not a free parameter but is fixed by the time when Iapetus accreted, by the canonical concentration of Al-26, and, to a lesser extent, by the concentration of Fe-60. The needed amount of heat is available only if Iapetus accreted between 2.5 and 5.0Myr after the formation of the calcium aluminum inclusions as found in meteorites. Models with these features allow us to explain Iapetus? present synchronous rotation, its fossil 16-h shape, and the context within which the equatorial ridge arose.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Icarus; Volume 190; 179-202
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2018-06-11
    Description: The Imager for Mars Pathfinder (IMP) was a mast-mounted instrument on the Mars Pathfinder lander which landed on Mars Ares Vallis floodplain on July 4, 1997. During the 83 sols of Mars Pathfinders landed operations, the IMP collected over 16,600 images. Multispectral images were collected using twelve narrowband filters at wavelengths between 400 and 1000 nm in the visible and near infrared (VNIR) range. The IMP provided VNIR spectra of the materials surrounding the lander including rocks, bright soils, dark soils, and atmospheric observations. During the primary mission, only a single primary rock spectral class, Gray Rock, was recognized; since then, Black Rock, has been identified. The Black Rock spectra have a stronger absorption at longer wavelengths than do Gray Rock spectra. A number of coated rocks have also been described, the Red and Maroon Rock classes, and perhaps indurated soils in the form of the Pink Rock class. A number of different soil types were also recognized with the primary ones being Bright Red Drift, Dark Soil, Brown Soil, and Disturbed Soil. Examination of spectral parameter plots indicated two trends which were interpreted as representing alteration products formed in at least two different environmental epochs of the Ares Vallis area. Subsequent analysis of the data and comparison with terrestrial analogs have supported the interpretation that the rock coatings provide evidence of earlier martian environments. However, the presence of relatively uncoated examples of the Gray and Black rock classes indicate that relatively unweathered materials can persist on the martian surface.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2018-06-11
    Description: Home Plate is a layered plateau in Gusev crater on Mars. It is composed of clastic rocks of moderately altered alkali basalt composition, enriched in some highly volatile elements. A coarse-grained lower unit is overlain by a finer-grained upper unit. Textural observations indicate that the lower strata were emplaced in an explosive event, and geochemical considerations favor an explosive volcanic origin over an impact origin. The lower unit likely represents accumulation of pyroclastic materials, while the upper unit may represent eolian reworking of the same pyroclastic materials.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2018-06-06
    Description: In this chapter we examine what can be learned about extrasolar planet atmospheres by concentrating on a class of planets that transit their parent stars. As discussed in the previous chapter, one way of detecting an extrasolar planet is by observing the drop in stellar intensity as the planet passes in front of the star. A transit represents a special case in which the geometry of the planetary system is such that the planet s orbit is nearly edge-on as seen from Earth. As we will explore, the transiting planets provide opportunities for detailed follow-up observations that allow physical characterization of extrasolar planets, probing their bulk compositions and atmospheres.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...