ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (229)
  • 2005-2009  (83)
  • 1960-1964
  • 1920-1924
  • 2013  (115)
  • 2011  (114)
  • 2007  (83)
Collection
Years
  • 2010-2014  (229)
  • 2005-2009  (83)
  • 1960-1964
  • 1920-1924
Year
  • 1
    Publication Date: 2023-11-01
    Keywords: Abietinella abietina; Agonimia gelatinosa; Alaska, USA; Alectoria nigricans; Alectoria ochroleuca; Allocetraria madreporiformis; Aloina brevirostris; Alopecurus alpinus; Amblystegium longicuspus; Amblystegium serpens; Anaptychia bryorum; Anastrophyllum minutum; Andromeda polifolia; Androsace chamaejasme; Aneura pinguis; Antennaria friesiana; Antennaria sp.; Anthelia juratzkana; Arctagrostis latifolia; Arctoa anderssonii; Arctocetraria nigricascens; Arctomia delicatula; Arctostaphylos alpina; Arctous rubra; Arnellia fennica; Artemisia borealis; Arthrorhaphis vacillans; Asahinea chrysantha; Astragalus alpinus; Astragalus richardsonii; Astragalus umbellatus; Aulacomnium acuminatum; Aulacomnium palustre; Aulacomnium turgidum; Baeomyces carneus; Baeomyces rufus; Barbilophozia barbata; Barbilophozia binsteadii; Barbilophozia hyperborea; Barbilophozia kunzeana; Barbula unguiculata; Bare ground; Bartramia ithyphylla; Betula nana; Biatora subduplex; Biatora vernalis; Biatorella conspersa; Bistorta vivipara; Blepharostoma trichophyllum; Brachythecium mildeanum; Brachythecium turgidum; Braya glabella var. glabella; Braya glabella var. purpurascens; Braya humilis; Bryocaulon divergens; Bryodina rhypariza; Bryoerythrophyllum recurvirostre; Bryonora castanea; Bryum arcticum; Bryum argenteum; Bryum caespiticium; Bryum pseudotriquetrum; Bryum rutilans; Bryum sp.; Bryum subneodamense; Bryum teres; Bryum wrightii; Bucegia romanica; Calamagrostis canadensis; Calamagrostis sp.; Callialaria curvicaule; Calliergon giganteum; Calliergon sp.; Caloplaca ammiospila; Caloplaca cerina; Caloplaca phaeocarpella; Caloplaca sp.; Caloplaca tetraspora; Caloplaca tiroliensis; Caloplaca tornoensis; Caloplaca xanthostigmoidea; Calypogeja muelleriana; Calypogeja sphagnicola; Campylium arcticum; Campylium chrysophyllum; Campylium longicuspus; Campylium polygamum; Campylium stellatum; Candelariella placodizans; Candelariella sp.; Candelariella terrigena; Cardamine bellidifolia; Cardamine digitata; Carex aquatilis; Carex atrofusca; Carex bigelowii; Carex capillaris; Carex fuliginosa var. misandra; Carex heleonastes; Carex membranacea; Carex microchaeta; Carex rariflora; Carex rotundata; Carex rupestris; Carex scirpoidea; Carex sp.; Carex vaginata var. quasivaginata; Cassiope tetragona; Catapyrenium cinereum; Catapyrenium sp.; Catoscopium nigritum; Cephalozia bicuspidata; Cephalozia pleniceps; Cephaloziella arctogena; Cephaloziella grimsulana; Cephaloziella varians; Cerastium arcticum; Cerastium beeringianum; Ceratodon heterophyllus; Ceratodon purpureus; Cetraria aculeata; Cetraria inermis; Cetraria islandica; Cetraria laevigata; Cinclidium arcticum; Cinclidium latifolium; Cirriphyllum cirrosum; Cladina arbuscula; Cladina mitis; Cladina rangiferina; Cladina stygia; Cladonia alaskana; Cladonia amaurocraea; Cladonia cenotea; Cladonia chlorophaea; Cladonia coccifera; Cladonia cornuta; Cladonia cyanipes; Cladonia deformis; Cladonia fimbriata; Cladonia gracilis; Cladonia gracilis var. elongata; Cladonia macroceras; Cladonia pleurota; Cladonia pocillum; Cladonia pyxidata; Cladonia scabriuscula; Cladonia sp.; Cladonia squamosa; Cladonia subfurcata; Cladonia sulphurina; Cladonia trassii; Cladonia uncialis; Cochlearia groenlandica; Collema ceraniscum; Collema sp.; Collema tenax; Collema undulatum; Conostomum tetragonum; Cratoneuron sp.; Ctenidium molluscum; Ctenidium procerrimum; Cyrtomnium hymenophylloides; Dactylina arctica; Dactylina beringica; Dactylina ramulosa; Deadhorse; Dicranum acutifolium; Dicranum angustum; Dicranum bonjeanii; Dicranum elongatum; Dicranum fragilifolium; Dicranum groenlandicum; Dicranum sp.; Dicranum spadiceum; Dicranum undulatum; Didymodon asperifolius; Didymodon rigidulus; Didymodon rigidulus var. icmadophilus; Didymodon sp.; Didymodon spadiceus; Distichium capillaceum; Distichium inclinatum; Ditrichum flexicaule; Draba alpina; Draba cinerea; Draba nivalis; Draba oblongata; Draba sp.; Draba subcapitata; Drepanocladus aduncus; Drepanocladus brevifolius; Drepanocladus sendtneri; Drepanocladus sp.; Dryas integrifolia; Elymus alaskanus var. alaskanus; Elymus alaskanus var. hyperarcticus; Empetrum nigrum; Encalypta alpina; Encalypta longicolla; Encalypta procera; Encalypta rhaptocarpa; Encalypta sp.; Encalypta vulgaris; Endocarpon pusillum; Entodon concinnus; ENV; Environmental investigation; Epilobium sp.; Equisetum arvense; Equisetum variegatum; Eriophorum angustifolium var. triste; Eriophorum vaginatum; Eurhynchium pulchellum; Event label; Evernia perfragilis; Festuca baffinensis; Festuca brachyphylla; Festuca hyperborea; Fissidens arcticus; Fissidens bryoides; Flavocetraria cucullata; Flavocetraria nivalis; Franklin_Bluffs; Fulgensia bracteata; Fuscopannaria praetermissa; Green_Cabin; Grimmia sp.; Gymnomitrion concinnatum; Gymnomitrion corallioides; Happy_Valley; Hedysarum alpinum; Hennediella heimii; Hennediella heimii var. arctica; Howe_Island; Hulteniella integrifolium; Hylocomium splendens; Hymenostylium recurvirostre; Hypnum bambergeri; Hypnum cupressiforme; Hypnum holmenii; Hypnum revolutum; Hypnum sp.; Hypnum subimponens; Hypnum vaucheri; Hypogymnia subobscura; Isachsen2; Isopterygiopsis pulchella; Japewia tornoensis; Juncus biglumis; Juncus castaneus; Juncus triglumis; Jungermannia polaris; Kiaeria cf. blyttii; Kobresia myosuroides; Lagotis glauca; Latitude of event; Lecanora epibryon; Lecanora geophila; Lecanora luteovernalis; Lecidea ramulosa; Lecidella wulfenii; Leiocolea collaris; Lepraria cf. vouauxii; Lepraria neglecta; Lepraria sp.; Leptobryum pyriforme; Leptogium gelatinosum; Leptogium lichenoides; Leptogium sp.; Limprichtia revolvens; Lloydia serotina; Longitude of event; Lopadium pezizoideum; Lophozia badensis; Lophozia collaris; Lophozia excisa; Lophozia jurensis; Lophozia longiflora; Lophozia polaris; Lophozia savicziae; Lophozia silvicola; Lophozia sp.; Lophozia ventricosa; Lophozia wenzelii; Lupinus arcticus; Luzula confusa; Luzula nivalis; Masonhalea richardsonii; Meesia longiseta; Meesia triquetra; Meesia uliginosa; Megalaria jemtlandica; Megaspora verrucosa; Micarea incrassata; Minuartia arctica; Minuartia rossii; Minuartia rubella; Mnium marginatum; Mnium thomsonii; Mould_Bay2; Mycoblastus sanguinarius; Myurella julacea; Myurella tenerrima; Nephroma arcticum; Nephroma expallidum; Nostoc commune; Ochrolechia androgyna; Ochrolechia cf. inaequatula; Ochrolechia frigida; Ochrolechia inaequatula; Ochrolechia sp.; Ochrolechia upsaliensis; Odontoshisma macounii; Orthilia secunda; Orthothecium chryseum; Orthothecium strictum; Orthothecium varia; Orthotrichum speciosum; Oxyria digyna; Oxytropis arctica; Oxytropis arctobia; Oxytropis borealis; Oxytropis maydelliana; Oxytropis sp.; Packera heterophylla; Papaver macounii; Papaver radicatum; Papaver sp.; Parmelia omphalodes var. glacialis; Parrya arctica; Parrya nudicaulis; Pedicularis albolabiata; Pedicularis arctoeuropaea; Pedicularis capitata; Pedicularis labradorica; Pedicularis lanata; Pedicularis langsdorfii; Pedicularis lapponica; Pedicularis oederi; Pedicularis sudetica; Pellia endivifolia; Peltigera aphthosa; Peltigera canina; Peltigera didactyla; Peltigera frippii; Peltigera leucophlebia; Peltigera malacea; Peltigera neopolydactyla; Peltigera polydactylon; Peltigera rufescens; Peltigera scabrosa; Peltigera sp.; Peltigera venosa; Pertusaria atra; Pertusaria bryontha; Pertusaria dactylina; Pertusaria glomerata; Pertusaria octomela; Pertusaria panyrga; Petasites frigidus; Phaeorrhiza nimbosa; Philonotis tomentella; Physconia muscigena; Placopsis gelida; Placynthium nigrum; Plagiochila asplenioides; Pleurozium schreberi; Poa abbreviata; Poa alpigena; Poa arctica var. lanata; Poa sp.; Pogonatum urnigerum; Pohlia beringiensis; Pohlia cruda; Pohlia drummondii; Pohlia nutans; Pohlia sp.; Polyblastia bryophila; Polyblastia sendtneri; Polyblastia terrestris; Polychidium muscicola; Polytrichastrum alpinum; Polytrichastrum alpinum var. alpinum; Polytrichum hyperboreum; Polytrichum piliferum; Polytrichum sp.;
    Type: Dataset
    Format: text/tab-separated-values, 70093 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-07-10
    Keywords: -; Active layer depth; Alaska, USA; Bare ground; Blue-green algae; Carbon/Nitrogen ratio; Deadhorse; Density; ENV; Environmental investigation; Equisetum; Event label; Forbs; Franklin_Bluffs; Grass, cover; Green_Cabin; Happy_Valley; HEIGHT above ground; Horizon; Howe_Island; Index; Isachsen2; Latitude 2; Lichen; Marchantiophyta; Moss; Mould_Bay2; Normalized Difference Vegetation Index; pH; Plant community; Queen Elizabeth Islands, Canada NWT; Sagwon; Sample code/label; Sand; Shrubs; Silt; Size fraction 〈 0.002 mm, clay; Snow thickness; Soil moisture; Vegetation, cover; Vegetation biomass; Zone, biogeographic
    Type: Dataset
    Format: text/tab-separated-values, 9758 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Walker, Donald A; Kuss, Patrick; Epstein, Howard E; Kade, Anja N; Vonlanthen, Corinne M; Raynolds, Martha K; Daniëls, Frederikus J A (2011): Vegetation of zonal patterned-ground ecosystems along the North America Arctic bioclimate gradient. Applied Vegetation Science, 14(4), 440-463, https://doi.org/10.1111/j.1654-109X.2011.01149.x
    Publication Date: 2023-12-13
    Description: Question: How do interactions between the physical environment and biotic properties of vegetation influence the formation of small patterned-ground features along the Arctic bioclimate gradient? Location: At 68° to 78°N: six locations along the Dalton Highway in arctic Alaska and three in Canada (Banks Island, Prince Patrick Island and Ellef Ringnes Island). Methods: We analysed floristic and structural vegetation, biomass and abiotic data (soil chemical and physical parameters, the n-factor [a soil thermal index] and spectral information [NDVI, LAI]) on 147 microhabitat releves of zonalpatterned-ground features. Using mapping, table analysis (JUICE) and ordination techniques (NMDS). Results: Table analysis using JUICE and the phi-coefficient to identify diagnostic species revealed clear groups of diagnostic plant taxa in four of the five zonal vegetation complexes. Plant communities and zonal complexes were generally well separated in the NMDS ordination. The Alaska and Canada communities were spatially separated in the ordination because of different glacial histories and location in separate floristic provinces, but there was no single controlling environmental gradient. Vegetation structure, particularly that of bryophytes and total biomass, strongly affected thermal properties of the soils. Patterned-ground complexes with the largest thermal differential between the patterned-ground features and the surrounding vegetation exhibited the clearest patterned-ground morphologies.
    Keywords: International Polar Year (2007-2008); IPY
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © Marine Biological Laboratory, 2006. This article is posted here by permission of Marine Biological Laboratory for personal use, not for redistribution. The definitive version was published in Biological Bulletin 210 (2006): 201-214.
    Description: Bryostatin, a potent agonist of protein kinase C (PKC), when administered to Hermissenda was found to affect acquisition of an associative learning paradigm. Low bryostatin concentrations (0.1 to 0.5 ng/ml) enhanced memory acquisition, while concentrations higher than 1.0 ng/ml down-regulated the pathway and no recall of the associative training was exhibited. The extent of enhancement depended upon the conditioning regime used and the memory stage normally fostered by that regime. The effects of two training events (TEs) with paired conditioned and unconditioned stimuli, which standardly evoked only short-term memory (STM) lasting 7 min, were—when bryostatin was added concurrently—enhanced to a long-term memory (LTM) that lasted about 20 h. The effects of both 4- and 6-paired TEs (which by themselves did not generate LTM), were also enhanced by bryostatin to induce a consolidated memory (CM) that lasted at least 5 days. The standard positive 9-TE regime typically produced a CM lasting at least 6 days. Low concentrations of bryostatin (〈0.5 ng/ml) elicited no demonstrable enhancement of CM from 9-TEs. However, animals exposed to bryostatin concentrations higher than 1.0 ng/ml exhibited no behavioral learning. Sharp-electrode intracellular recordings of type-B photoreceptors in the eyes from animals conditioned in vivo with bryostatin revealed changes in input resistance and an enhanced long-lasting depolarization (LLD) in response to light. Likewise, quantitative immunocytochemical measurements using an antibody specific for the PKC-activated Ca2+/GTP-binding protein calexcitin showed enhanced antibody labeling with bryostatin. Animals exposed to the PKC inhibitor bisindolylmaleimide-XI (Ro-32-0432) administered by immersion prior to 9-TE conditioning showed no training-induced changes with or without bryostatin exposure. However, if animals received bryostatin before Ro-32, the enhanced acquisition and demonstrated recall still occurred. Therefore, pathways responsible for the enhancement effects induced by bryostatin were putatively mediated by PKC. Overall, the data indicated that PKC activation occurred and calexcitin levels were raised during the acquisition phases of associative conditioning and memory initiation, and subsequently returned to baseline levels within 24 and 48 h, respectively. Therefore, the protracted recall measured by the testing regime used was probably due to bryostatin-induced changes during the acquisition and facilitated storage of memory, and not necessarily to enhanced recall of the stored memory when tested many days after training.
    Description: AMK and HTE acknowledge the support of the Marine Biological Laboratory and Blanchette Rockefeller Neurosciences Institutes for these initial studies.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-07-04
    Description: Remote sensing has become a valuable tool in monitoring arctic environments. The aim of this paper is ground-based hyperspectral characterization of Low Arctic Alaskan tundra communities along four environmental gradients (regional climate, soil pH, toposequence, and soil moisture) that all vary in ground cover, biomass, and dominating plant communities. Field spectroscopy in connection with vegetation analysis was carried out in summer 2012, along the North American Arctic Transect (NAAT). Spectral metrics were extracted, including the averaged reflectance and absorption-related metrics such as absorption depths and area of continuum removal. The spectral metrics were investigated with respect to “greenness”, biomass, vegetation height, and soil moisture regimes. The results show that the surface reflectances of all sites are similar in shape with a reduced near-infrared (NIR) reflectance that is specific for low-growing biomes. The main spectro-radiometric findings are: (i) Southern sites along the climate gradient have taller shrubs and greater overall vegetation biomass, which leads to higher reflectance in the NIR. (ii) Vegetation height and surface wetness are two antagonists that balance each other out with respect to the NIR reflectance along the toposequence and soil moisture gradients. (iii) Moist acidic tundra (MAT) sites have “greener” species, more leaf biomass, and green-colored moss species that lead to higher pigment absorption compared to moist non-acidic tundra (MNT) sites. (iv) MAT and MNT plant community separation via narrowband Normalized Difference Vegetation Index (NDVI) shows the potential of hyperspectral remote sensing applications in the tundra.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
  • 8
  • 9
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...